Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Imaging Chronic Tuberculous Lesions Using Sodium [18F]Fluoride Positron Emission Tomography in Mice

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Calcification is a hallmark of chronic tuberculosis (TB) in humans, often noted years to decades (after the initial infection) on chest radiography, but not visualized well with traditional positron emission tomography (PET). We hypothesized that sodium [18F]fluoride (Na[18F]F) PET could be used to detect microcalcifications in a chronicallyMycobacterium tuberculosis-infected murine model.

Procedures

C3HeB/FeJ mice, which develop necrotic and hypoxic TB lesions, were aerosol-infected withM. tuberculosis and imaged with Na[18F]F PET.

Results

Pulmonary TB lesions from chronically infected mice demonstrated significantly higher Na[18F]F uptake compared with acutely infected or uninfected animals (P < 0.01), while no differences were noted in the blood or bone compartments (P > 0.08).Ex vivo biodistribution studies confirmed the imaging findings, and tissue histology demonstrated microcalcifications in TB lesions from chronically infected mice, which has not been demonstrated previously in a murine model.

Conclusion

Na[18F]F PET can be used for the detection of chronic TB lesions and could prove to be a useful noninvasive biomarker for TB studies.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. WHO Global tuberculosis report 2014.http://www.who.int/tb/publications/global_report/gtbr14_executive_summary.pdf?ua=1. Accessed 21 November

  2. Robbins SL, Kumar V (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Saunders/Elsevier, Philadelphia

    Google Scholar 

  3. Johnson DH, Via LE, Kim P et al (2014) Nuclear imaging: a powerful novel approach for tuberculosis. Nucl Med Biol 41:777–784

    Article CAS PubMed  Google Scholar 

  4. Sathekge M, Maes A, Kgomo M et al (2011) Use of18F-FDG PET to predict response to first-line tuberculostatics in HIV-associated tuberculosis. J Nucl Med 52:880–885

    Article PubMed  Google Scholar 

  5. Bagci U, Foster B, Miller-Jaster K et al (2013) A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging. EJNMMI Res 3:55

    Article PubMed Central PubMed  Google Scholar 

  6. Murawski AM, Gurbani S, Harper JS et al (2014) Imaging the evolution of reactivation pulmonary tuberculosis in mice using18F-FDG PET. J Nucl Med 55:1726–1729

    Article CAS PubMed  Google Scholar 

  7. Leung AN (1999) Pulmonary tuberculosis: the essentials. Radiology 210:307–322

    Article CAS PubMed  Google Scholar 

  8. Harper J, Skerry C, Davis SL et al (2011) Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. doi:10.1093/infdis/jir786

    PubMed Central PubMed  Google Scholar 

  9. Pan H, Yan BS, Rojas M et al (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    Article PubMed Central CAS PubMed  Google Scholar 

  10. Davis SL, Nuermberger EL, Um PK et al (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53:4879–4884

    Article PubMed Central CAS PubMed  Google Scholar 

  11. Ordonez AA, Pokkali S, DeMarco VP et al (2014) Radioiodo-DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59:642–649

    Article PubMed Central PubMed  Google Scholar 

  12. Davis SL, Be NA, Lamichhane G et al (2009) Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One. doi:10.1371/journal.pone.0006297

    Google Scholar 

  13. Weinstein EA, Liu L, Ordonez AA et al (2012) Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 56:6284–6290

    Article PubMed Central CAS PubMed  Google Scholar 

  14. Weinstein EA, Ordonez AA, DeMarco VP et al (2014) Imaging Enterobacteriaceae infectionin vivo with18F-fluorodeoxysorbitol positron emission tomography. Sci Transl Med 259ra146

  15. Foss CA, Harper JS, Wang H et al (2013) Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis 208:2067–2074

    Article PubMed Central CAS PubMed  Google Scholar 

  16. Bonewald LF, Harris SE, Rosser J et al (2003) von Kossa staining alone is not sufficient to confirm that mineralizationin vitro represents bone formation. Calcif Tissue Int 72:537–547

    Article CAS PubMed  Google Scholar 

  17. Lievremont M, Potus J, Guillou B (1982) Use of alizarin red S for histochemical staining of Ca2+ in the mouse; some parameters of the chemical reactionin vitro. Acta Anat 114:268–280

    Article CAS PubMed  Google Scholar 

  18. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    CAS PubMed  Google Scholar 

  19. Blau M, Ganatra R, Bender MA (1972) 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article CAS PubMed  Google Scholar 

  20. Shen CT, Qiu ZL, Han TT, Luo QY (2014) Performance of18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med 40:103–110

    Article  Google Scholar 

  21. Joshi NV, Vesey AT, Williams MC et al (2014)18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705–713

    Article PubMed  Google Scholar 

  22. Wilson GH 3rd, Gore JC, Yankeelov TE et al (2014) An approach to breast cancer diagnosis via PET imaging of microcalcifications using18F-NaF. J Nucl Med 55:1138–1143

    Article PubMed Central CAS PubMed  Google Scholar 

  23. Jayachandran R, Sundaramurthy V, Combaluzier B et al (2007) Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130:37–50

    Article CAS PubMed  Google Scholar 

  24. Canetti G (1955) The tubercle bacillus in the pulmonary lesion of man. The histobacteriogenesis of tuberculosis lesions: experimental studies. Springer Publishing Company, Inc, New York, pp 87–90

    Google Scholar 

  25. Dweck MR, Chow MW, Joshi NV et al (2012) Coronary arterial18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59:1539–1548

    Article CAS PubMed  Google Scholar 

  26. Gomori G (1943) Calcification and phosphatase. Am J Pathol 19:197

    PubMed Central CAS PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institutes of Health (NIH) Director’s Transformative Research Award R01-EB020539 (S.K.J.) and the NIH Director’s New Innovator Award DP2-OD006492 (S.K.J.) as well as R01-HL116316 (S.K.J.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

None of the authors report any financial or potential conflicts of interest.

Author information

Authors and Affiliations

  1. Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, USA

    Alvaro A. Ordonez, Vincent P. DeMarco, Mariah H. Klunk, Supriya Pokkali & Sanjay K. Jain

  2. Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA

    Alvaro A. Ordonez, Vincent P. DeMarco, Mariah H. Klunk, Supriya Pokkali & Sanjay K. Jain

  3. Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA

    Alvaro A. Ordonez, Vincent P. DeMarco, Mariah H. Klunk, Supriya Pokkali & Sanjay K. Jain

Authors
  1. Alvaro A. Ordonez

    You can also search for this author inPubMed Google Scholar

  2. Vincent P. DeMarco

    You can also search for this author inPubMed Google Scholar

  3. Mariah H. Klunk

    You can also search for this author inPubMed Google Scholar

  4. Supriya Pokkali

    You can also search for this author inPubMed Google Scholar

  5. Sanjay K. Jain

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSanjay K. Jain.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 66 kb)

ESM 2

(MOV 639 kb)

ESM 3

(MOV 1118 kb)

ESM 4

(MOV 625 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordonez, A.A., DeMarco, V.P., Klunk, M.H.et al. Imaging Chronic Tuberculous Lesions Using Sodium [18F]Fluoride Positron Emission Tomography in Mice.Mol Imaging Biol17, 609–614 (2015). https://doi.org/10.1007/s11307-015-0836-6

Download citation

Key words

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp