4913Accesses
6Altmetric
Abstract
For decades, the term “rhizosphere fauna” has been used as a synonym to denote agricultural pests among root herbivores, mainly nematodes and insect larvae. We want to break with this constrictive view, since the connection between plants and rhizosphere fauna is far more complex than simply that of resource and consumer. For example, plant roots have been shown to be neither defenceless victims of root feeders, nor passive recipients of nutrients, but instead play a much more active role in defending themselves and in attracting beneficial soil microorganisms and soil fauna. Most importantly, significant indirect feed-backs exist between consumers of rhizosphere microorganisms and plant roots. In fact, the majority of soil invertebrates have been shown to rely profoundly on the carbon inputs from roots, breaking with the dogma of soil food webs being mainly fueled by plant litter input from aboveground. In this review we will highlight areas of recent exciting progress and point out the black boxes that still need to be illuminated by rhizosphere zoologists and ecologists.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.





References
Albers D, Schaefer M, Scheu S (2006) Incorporation of plant carbon into the soil animal food web of an arable system. Ecology 87:235–245. doi:10.1890/04-1728
Arndt H, Schmidt-Denter K, Auer B, Weitere M (2003) Protozoans and biofilms. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Kluwer Academic, Dordrecht, pp 173–189
Ayres E, Dromph KM, Cook R, Ostle N, Bardgett RD (2007) The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct Ecol 21:256–263. doi:10.1111/j.1365-2435.2006.01227.x
Bais H, Park S, Weir T, Callaway R, Vivanco J (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008
Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159
Bakonyi G, Posta K, Kiss I, Fábián M, Nagy P, Nosek JN (2002) Density-dependent regulation of arbuscular mycorrhiza by collembola. Soil Biol Biochem 34:661–664. doi:10.1016/S0038-0717(01)00228-0
Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014. doi:10.1016/S0038-0717(99)00014-0
Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268. doi:10.1890/02-0274
Bardgett R, Wardle D, Yeates G (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878. doi:10.1016/S0038-0717(98)00069-8
Bardgett R, Cook R, Yeates G, Denton C (1999a) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33. doi:10.1023/A:1004642218792
Bardgett R, Denton C, Cook R (1999b) Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecol Lett 2:357–360. doi:10.1046/j.1461-0248.1999.00001.x
Bauer W, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433. doi:10.1016/j.pbi.2004.05.008
Beale E, Li G, Tan M-W, Rumbaugh KP (2006)Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137
Beare M, Coleman D, Crossley D, Hendrix P, Odum E (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22. doi:10.1007/BF02183051
Beyeler M, Keel C, Michaux P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain ofPseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant againstPhytium root rot. FEMS Microbiol Ecol 28:225–233. doi:10.1111/j.1574-6941.1999.tb00578.x
Bezemer TM, Van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. doi:10.1016/j.tree.2005.08.006
Bezemer TM, Wagenaar R, Dam NMV, Wäckers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562. doi:10.1034/j.1600-0706.2003.12424.x
Bezemer TM, De Deyn GB, Bossinga TM, Van Dam NM, Harvey JA, Van Der Putten WH (2005) Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol Lett 8:652–661. doi:10.1111/j.1461-0248.2005.00762.x
Bjørnlund L, Mørk S, Vestergard M, Rønn R (2006) Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biol Fertil Soils 43:1–11. doi:10.1007/s00374-005-0052-7
Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. Eur J Soil Biol 42, Suppl 1:S70–S78
Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208
Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Leeuwenhoek 81:465–480
Boff MIC, Zoon FC, Smits PH (2001) Orientation ofHeterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol Exp Appl 98:329–337. doi:10.1023/A:1018907812376
Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi:10.1111/j.1469-8137.2004.01066.x
Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715. doi:10.1016/S0038-0717(02)00157-8
Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000a) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147. doi:10.1016/S1164-5563(00)01059-1
Bonkowski M, Griffiths B, Scrimgeour C (2000b) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53. doi:10.1016/S0929-1393(99)00047-5
Bonkowski M, Griffiths BS, Ritz K (2000c) Food preferences of earthworms for soil fungi. Pedobiologia (Jena) 44:666–676. doi:10.1078/S0031-4056(04)70080-3
Bouwman LA, Zwart KB (1994) The ecology of bacterivorous protozoans and nematodes in arable soil. Agric Ecosyst Environ 51:145–160
Bracht Jørgensen H, Johansson T, Canbäck B, Hedlund K, Tunlid A (2005) Selective foraging of fungi by collembolans in soil. Biol Lett 1:243–246. doi:10.1098/rsbl.2004.0286
Bretherton S, Tordoff GM, Jones TH, Boddy L (2006) Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiol Ecol 58:33–40. doi:10.1111/j.1574-6941.2006.00149.x
Brimecombe M, De Leij F, Lynch J (2000) Effect of introducedPseudomonas fluorescens strains on soil nematode and protozoan populations in the rhizosphere of wheat and pea. Microb Ecol 38:387–397. doi:10.1007/s002489901004
Brown V, Gange A (1989) Differential effects of abobe- and below-ground insect herbivory during early plant succession. Oikos 54:67–76. doi:10.2307/3565898
Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9:123–135
Caldwell KN, Anderson GL, Williams PL, Beuchat LR (2003) Attraction of a free-living nematode,Caenorhabditis elegans, to foodborne pathogenic bacteria and its potential as a vector ofSalmonella poona for preharvest contamination of cantaloupe. J Food Prot 66:1964–1971
Campell BC, Nes WD (1983) A reappraisal of sterol biosynthesis and metabolism in aphids. J Insect Physiol 29:149–156. doi:10.1016/0022-1910(83)90138-5
Chakraborty S (1983) Population dynamics of amobae in soils suppressive and non-suppressive to wheat take-all. Soil Biol Biochem 15:661–664. doi:10.1016/0038-0717(83)90029-9
Chantanao A, Jensen HJ (1969) Saprozoic nematodes as carriers and disseminators of plant pathogenic bacteria. J Nematol 1:216–218
Chanway C, Turkington R, Holl F (1991) Ecological implications of specificity between plants and rhizosphere micro-organisms. Adv Ecol Res 21:121–169. doi:10.1016/S0065-2504(08)60098-7
Chen J, Ferris H (1999) The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol Biochem 31:1265–1279. doi:10.1016/S0038-0717(99)00042-5
Christensen M (1989) A view of fungal ecology. Mycologia 81:1–19. doi:10.2307/3759446
Christensen S, Bjørnlund L, Vestergard M (2007) Decomposer biomass in the rhizosphere to assess rhizodeposition. Oikos 116:65–74
Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46. doi:10.1016/j.biocontrol.2005.11.016
Clapperton MJ, Lee NO, Binet F, Conner RL (2001) Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biol Biochem 33:1531–1538. doi:10.1016/S0038-0717(01)00071-2
Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187. doi:10.1016/0038-0717(85)90113-0
Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley-Sayce, Chichester, pp 221–230
Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075
Davis E, Hussey R, Baum T, Bakker J, Schots A (2000) Nematode parasitism genes. Annu Rev Phytopathol 38:365–396. doi:10.1146/annurev.phyto.38.1.365
Dawson LA, Grayston SJ, Murray PJ, Pratt SM (2002) Root feeding behaviour of Tipula paludosa (Meig.) (Diptera : Tipulidae) on Loliumn perenne (L.) and Trifolium repens (L.). Soil Biol Biochem 34:609–615. doi:10.1016/S0038-0717(01)00217-6
De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633. doi:10.1016/j.tree.2005.08.009
De Deyn G, Raaijmakers C, Zoomer H, Berg M, de Ruiter P, Verhoef H, Bezemer T, van der Putten W (2003a) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713. doi:10.1038/nature01548
De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH (2003b) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713. doi:10.1038/nature01548
De Leij FAAM, Dixon-Hardy JE, Lynch JM (2002) Effect of 2, 4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol Fertil Soils 35:114–121. doi:10.1007/s00374-002-0448-6
De Mesel I, Derycke S, Moens T, Van Der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744. doi:10.1111/j.1462-2920.2004.00610.x
Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165. doi:10.1016/S0038-0717(98)00118-7
Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ . doi:10.1111/j.1365-3040.2008.01913.x
Dixon AFG (1985) Aphid ecology. Blackie, Glasgow London, p 157
Dromph KM (2003) Collembolans as vectors of entomopathogenic fungi. Pedobiologia (Jena) 47:245–256. doi:10.1078/0031-4056-00188
Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438. doi:10.1098/rsbl.2007.0232
Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353. doi:10.1111/j.1574-6976.1994.tb00144.x
Elfstrand S, Lagerlöf J, Hedlund K, Mårtensson A (2008) Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biol Biochem 40:2530–2539. doi:10.1016/j.soilbio.2008.06.013
Endlweber K, Scheu S (2006) Effects of Collembola on root properties of two competing ruderal plant species. Soil Biol Biochem 38:2025–2031
Endlweber K, Scheu S (2007) Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol Fertil Soils 43:741–749. doi:10.1007/s00374-006-0157-7
Erb M, Ton J, Degenhardt J, Turlings TCJ (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146:867–874
Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377. doi:10.1111/j.0269-8463.2005.00969.x
Fu SL, Ferris H, Brown D, Plant R (2005) Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biol Biochem 37:1979–1987
Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372. doi:10.1016/S0169-5347(00)01940-6
Gange A, Brown V (1997) Multitrophic interactions in terrestrial systems. Blackwell, Oxford
Geltzer JG (1963) On the behaviour of soil amoebae in the rhizospheres of plants. Pedobiologia (Jena) 2:249–251
Gheysen G, Jones J (2006) Molecular aspects of plant-nematode interactions. In: Perry R, Moens M (eds) Plant Nematology. CABI, pp 234–254
Goellner M, Wang X, Davis EL (2001) Endo-1, 4-glucanase expression in compatible plant nematode interactions. Plant Cell 13:2241–2255
Gormsen D, Olsson PA, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27:211–220
Goverse A, Overmars H, Engelbertink J, Schots A, Bakker J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Mol Plant Microbe Interact 13:1121–1129. doi:10.1094/MPMI.2000.13.10.1121
Grayston SJ, Dawson LA, Treonis AM, Murray PJ, Ross J, Reid EJ, MacDougall R (2001) Impact of root herbivory by insect larvae on soil microbial communities. Eur J Soil Biol 37:277–280. doi:10.1016/S1164-5563(01)01098-6
Grewal PS (1991) Effects ofCaenorhabditis elegans(Nematoda: Rhabditidae) on the spread of the bacteriumPseudomonas tolaasii in mushrooms (Agaricus bisporus). Ann Appl Biol 118:47–55. doi:10.1111/j.1744-7348.1991.tb06084.x
Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fertil Soils 9:83–88. doi:10.1007/BF00335867
Griffiths BS (1994) Soil nutrient flow. In: Darbyshire J (ed) Soil protozoa. CAB International, Wallingford, pp 65–91
Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129
Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizingPseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656
Haase S, Ruess L, Neumann G, Marhan S, Kandeler E (2007) Low-level herbivory by root-knot nematodes (Meloidogyne incognita) modifies root hair morphology and rhizodeposition in host plants (Hordeum vulgare). Plant Soil 301:151–164. doi:10.1007/s11104-007-9431-1
Hall M, Hedlund K (1999) A soil mite uses fungal cues in search for its collembolan prey. Pedobiologia (Jena) 43:11–17
Harold S, Tordoff GM, Jones TH, Boddy L (2005) Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycol Res 109:927–935. doi:10.1017/S095375620500331X
Harris KK, Boerner REJ (1990) Effects of belowground grazing by collembola on growth, mycorrhizal infection, and P uptake ofGeranium robertianum. Plant Soil 129:203–210
Hatch D, Murray P (1994) Transfer of nitrogen from damaged roots of white clover (Trifolium repens L.) to closely associated roots of intact perennial ryegrass (Lolium perenne L.). Plant Soil 166:181–185. doi:10.1007/BF00008331
Hedlund K, Sjögren Öhrn M (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88:585–591
Henderson V, Katznelson H (1961) The effect of plant roots on the nematode population of the soil. Can J Microbiol 7:163–167
Herdler S, Kreuzer K, Scheu S, Bonkowskia M (2008) Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 40:660–668. doi:10.1016/j.soilbio.2007.09.026
Horiuchi J-I, Prithiviraj B, Bais H, Kimball B, Vivanco J (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857. doi:10.1007/s00425-005-0025-y
Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230. doi:10.1128/IAI.72.12.7220-7230.2004
Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75:2146–2157
Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol Monographs 55:119–140
Jacobs M, Rubery PH (1988) Naturally-occuring auxin transport regulators. Science 241:346–349. doi:10.1126/science.241.4863.346
Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soils 20:263–269. doi:10.1007/BF00336088
Jezbera J, Hornak K, Simek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. doi:10.1111/j.1462-2920.2006.01026.x
Johnson D, Krsek M, Wellington EMH, Stott AW, Cole L, Bardgett RD, Read DJ, Leake JR (2005) Soil invertebrates disrupt carbon flow through fungal networks. Science 309:1047. doi:10.1126/science.1114769
Jonas JL, Wilson GWT, White PM, Joern A (2007) Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol Biochem 39:2594–2602
Joseph C, Phillips D (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192. doi:10.1016/S0981-9428(02)00021-9
Joshi A, Chand R, Arun B, Singh R, Ortiz R (2007) Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of South Asia. Euphytica 153:135–151. doi:10.1007/s10681-006-9249-6
Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090. doi:10.1128/AEM.00557-06
Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22:714–719
Jousset A, Péchy-Tarr M, Rochat L, Keel C, Scheu S, Bonkowski M (2009) Cheating and predation determine the toxin production by the biocontrol bacteriumPseudomonas fluorescens CHA0. (submitted)
Kampichler C, Rolschewski J, Donnelly DP, Boddy L (2004) Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biol Biochem 36:591–599. doi:10.1016/j.soilbio.2003.12.004
Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406. doi:10.1890/07-0471.1
Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13
Kimpinski J, Sturz A (1996) Population growth of a rhabditid nematode on plant growth promoting bacteria from potato tubers and rhizosphere soil. J Nematol 28:682–686
Klironomos JN, Hart MM (2001) Animal nitrogen swap for plant carbon. Nature 410:651–652. doi:10.1038/35070643
Klironomos JN, Kendrick WB (1996) Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fertil Soils 21:43–52. doi:10.1007/BF00335992
Klironomos JN, Ursic M (1998) Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol Fertil Soils 26:250–253. doi:10.1007/s003740050375
Knox OGG, Killham K, Mullins CE, Wilson MJ (2003) Nematode-enhanced microbial colonization of the wheat rhizosphere. FEMS Microbiol Lett 225:227–233. doi:10.1016/S0378-1097(03)00517-2
Knox OGG, Killham K, Artz RRE, Mullins C, Wilson M (2004) Effect of nematodes on rhizosphere colonization by seed-applied bacteria. Appl Environ Microbiol 70:4666–4671. doi:10.1128/AEM.70.8.4666-4671.2004
Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing ofCaenorhabditis elegans byBurkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5:343–351. doi:10.1046/j.1462-5822.2003.00280.x
Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672. doi:10.1016/j.soilbio.2005.11.027
Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10:22–28
Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:185–1498
Laakso J, Setälä H (1999) Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64. doi:10.2307/3546996
Larsen T, Gorissen A, Krogh P, Ventura M, Magid J (2007) Assimilation dynamics of soil carbon and nitrogen by wheat roots and Collembola. Plant Soil 295:253–264. doi:10.1007/s11104-007-9280-y
Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Appl Soil Ecol 33:152–175. doi:10.1016/j.apsoil.2006.03.001
Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769. doi:10.3852/mycologia.97.4.762
Liu XY, Shi M, Liao YH, Gao Y, Zhang ZK, Wen DH, Wu WZ, An CC (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 51:315–325. doi:10.1007/s00248-006-9031-2
Malamy J, Benfey P (1997) Lateral root formation inArabidopsis thaliana. Plant Physiol 114:277
Mao X, Hu F, Griffiths B, Li H (2006) Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biol Biochem 38:1615–1622
Mao X, Hu F, Griffiths B, Chen X, Liu M, Li H (2007) Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects? Soil Biol Biochem 39:1816–1819. doi:10.1016/j.soilbio.2007.01.027
Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes—the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119. doi:10.1023/A:1026139026780
Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe B, Bauer W (2003) Extensive and specific responses of a Eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449. doi:10.1073/pnas.262672599
Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009
Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004a) Microcolonies, quorum sensing and cytotoxicity determine the survival ofPseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226. doi:10.1111/j.1462-2920.2004.00556.x
Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004b) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599. doi:10.1128/AEM.70.3.1593-1599.2004
Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2, 4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998. doi:10.1128/AEM.70.4.1990-1998.2004
McKenzie Bird D (2004) Signaling between nematodes and plants. Curr Opin Plant Biol 7:372–376. doi:10.1016/j.pbi.2004.05.005
Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jurgens K, Macek M, Parry JD, Roberts EC, Simek K (2007) Selective feeding behaviour of key free-living protists: avenues for continued study. In 10th Symposium on Aquatic Microbial Ecology (SAME 10). pp 83–98. Inter-Research, Faro, PORTUGAL.
Moore JC, Hunt WH (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263. doi:10.1038/333261a0
Munn E, Munn P (2002) Feeding and digestion. In: Lee D (ed) The biology of nematodes. Taylor & Francis, Singapore, pp 211–232
Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72:5436–5444. doi:10.1128/AEM.00207-06
Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect root herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens) seedlings. Can J Bot 74:1591–1595. doi:10.1139/b96-192
Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxin-like effects onDaucus carota cell growth and nitrate metabolism. Soil Biol Biochem 31:1303–1311. doi:10.1016/S0038-0717(99)00049-8
Nardi S, Panuccio MR, Abenavoli MR, Muscolo A (1994) Auxin-like effect of humic substances extracted from faeces ofAllolobophora caliginosa andA. rosea. Soil Biol Biochem 26:1341–1346. doi:10.1016/0038-0717(94)90215-1
Newsham KK, Rolf J, Pearce DA, Strachan RJ (2004) Differing preferences of Antarctic soil nematodes for microbial prey. Europ J Soil Biol 40:1–8
Ostle N, Briones MJI, Ineson P, Cole L, Staddon P, Sleep D (2007) Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biol Biochem 39:768–777. doi:10.1016/j.soilbio.2006.09.025
Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Europ J Soil Sci 54:741–750
Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546. doi:10.1038/nrmicro1180
Pfander I, Zettel J (2004) Chemical communication inCeratophysella sigillata (Collembola: Hypogastruridae): intraspecific reaction to alarm substances. Pedobiologia (Jena) 48:575–580. doi:10.1016/j.pedobi.2004.06.002
Phillips DA, Streit W (1998) Modifying rhizosphere microbial communities to enhance nutrient availability in cropping systems. Field Crops Res 56:217–221. doi:10.1016/S0378-4290(97)00133-0
Phillips D, Joseph C, Yang G, Martinez-Romero E, Sanborn J, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275–12280. doi:10.1073/pnas.96.22.12275
Phillips D, Ferris H, Cook D, Strong D (2003) Molecular control points in rhizosphere food webs. Ecology 84:816–826
Phillips D, Fox T, King M, Bhuvaneswari T, Teuber L (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894. doi:10.1104/pp. 104.044222
Pickup ZL, Pickup R, Parry JD (2007) Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Appl Environ Microbiol 73:2631–2634
Poll J, Marhan S, Haase S, Hallmann J, Kandeler E, Ruess L (2007) Low amounts of herbivory by root-knot nematodes affect microbial community dynamics and carbon allocation in the rhizosphere. FEMS Microbiol Ecol 62:268–279. doi:10.1111/j.1574-6941.2007.00383.x
Pollierer M, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. doi:10.1111/j.1461-0248.2007.01064.x
Popeijus H, Overmars H, Jones J, Blok V, Goverse A, Helder J, Schots A, Bakker J, Smant G (2000) Enzymology—Degradation of plant cell walls by a nematode. Nature 406:36–37. doi:10.1038/35017641
Puthoff D, Nettleson D, Rodermel S, Baum T (2003)Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profile. Plant J 33:911–921. doi:10.1046/j.1365-313X.2003.01677.x
Rantalainen ML, Fritze H, Haimi J, Kiikkila O, Pennanen T, Setala H (2004) Do enchytraeid worms and habitat corridors facilitate the colonisation of habitat patches by soil microbes? Biol Fertil Soils 39:200–208
Rantalainen M-L, Fritze H, Haimi J, Pennanen T, Setälä H (2005) Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Glob Change Biol 11:1614–1627. doi:10.1111/j.1365-2486.2005.000999.x
Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880
Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936. doi:10.1111/j.1461-0248.2007.01084.x
Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737. doi:10.1038/nature03451
Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312. doi:10.1111/j.1469-8137.2005.01558.x
Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50:518–528. doi:10.1007/s00248-005-5017-8
Riga E (2004) Orientation behavior. In: Gaugler R, Bilgrami AL (eds) Nematode behaviour. CABI, Wallingford, pp 63–90
Robinson AF (2003) Nematode behaviour and migrations through soil and host tissue. In: Zhongxiao X, Chen SY, Dickson DW (eds) Nematology advances and perspectives. Volume 1, Nematode morphology, physiology, and ecology. CABI, Wallingford, pp 330–405
Rodger S, Bengough AG, Griffiths BS, Stubbs V, Young IM (2003) Does the presence of detached root border cells ofZea mays alter the activity of the pathogenic nematodeMeloidogyne incognita?. Phytopathology 93:1111–1114. doi:10.1094/PHYTO.2003.93.9.1111
Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269. doi:10.1038/nature04887
Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere ofArabidopsis thaliana. ISME J, The ISME Journal advance online publication 26 February 2009. doi:10.1038/ismej.2009.11
Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166. doi:10.1111/j.1574-6941.2008.00465.x
Sabatini MA, Innocenti G (2001) Effects of Collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol Fertil Soils 33:62–66. doi:10.1007/s003740000290
Schädler M, Jung G, Brandl R, Auge H (2004) Secondary succession is influenced by belowground insect herbivory on a productive site. Oecologia 138:242–252. doi:10.1007/s00442-003-1425-y
Scheu S (1993) Cellulose and lignin decomposition in soils from different ecosystems on limestone as affected by earthworm processing. Pedobiologia 37:167–177
Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102. doi:10.1046/j.0269-8463.2004.00807.x
Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food-webs. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223–264
Scheu S, Simmerling F (2004) Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139:347–353. doi:10.1007/s00442-004-1513-7
Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and the herbivore system: effects of earthworms and collembola on plant growth and aphid development. Oecologia 119:541–551. doi:10.1007/s004420050817
Schulman O, Tiunov A (1999) Leaf litter fragmentation by the earthworm Lumbricus terrestris L. Pedobiologia 43:453–458
Seres A, Bakonyi G, Posta K (2007) Collembola (Insecta) disperse the arbuscular mycorrhizal fungi in the soil: pot experiment. Pol J Ecol 55:395–399
Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76:1844–1851. doi:10.2307/1940716
Shapiro J (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104. doi:10.1146/annurev.micro.52.1.81
Shiraishi H, Enami Y, Okano S (2003) Folsomia hidakana (Collembola) prevents damping-off disease in cabbage and Chinese cabbage by Rhizoctonia solani. Pedobiologia (Jena) 47:33–38. doi:10.1078/0031-4056-00167
Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease ofPseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematodeMeloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi:10.1128/AEM.71.9.5646-5649.2005
Soler R, Bezemer TM, Cortesero AM, Van Der Putten WH, Vet LEM, Harvey JA (2007) Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152:257–264. doi:10.1007/s00442-006-0649-z
Somasundaram S, Bonkowski M, Iijima M (2008) Functional role of mucilage-border cells: a complex facilitating protozoan effects on plant growth. Plant Prod Sci 11:344–351. doi:10.1626/pps.11.344
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072.x
Stanton NL (1988) The underground in grasslands. Annu Rev Ecol Syst 19:573–589. doi:10.1146/annurev.es.19.110188.003041
Steinaker DF, Wilson SD (2008) Scale and density dependent relationships among roots, mycorrhizal fungi and collembola in grassland and forest. Oikos 117:703–710
Stephan A, Meyer A, Schmid B (2000) Plant diversity positively affects soil bacterial diversity in experimental grassland ecosystems. J Ecol 88:988–998. doi:10.1046/j.1365-2745.2000.00510.x
Stephens P, Davoren C (1997) Influence of the earthworms Aporrectodea trapezoides andA. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem 29:511–516. doi:10.1016/S0038-0717(96)00108-3
Sundin P, Valeur A, Olsson S, Odham G (1990) Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiol Ecol 73:13–22
Tapilskaja N (1967) Amoeba albida Nägler und ihre Beziehungen zu dem Pilz Verticillium dahliae Kleb, dem Erreger der Welkekrankheit von Baumwollpflanzen. Pedobiologia (Jena) 7:156–165
Thimm T, Larink O (1995) Grazing preferences of some collembola for endomycorrhizal fungi. Biol Fertil Soils 19:266–268. doi:10.1007/BF00336171
Tiunov A, Scheu S (2005) Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia 142:636–642. doi:10.1007/s00442-004-1758-1
Tordoff GM, Boddy L, Jones TH (2006) Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina and Resinicium bicolor. Mycol Res 110:335–345. doi:10.1016/j.mycres.2005.11.012
Tordoff GM, Boddy L, Jones TH (2008) Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biol Biochem 40:434–442. doi:10.1016/j.soilbio.2007.09.006
Treonis AM, Grayston SJ, Murray PJ, Dawson LA (2005) Effects of root feeding, cranefly larvae on soil microorganisms and the composition of rhizosphere solutions collected from grassland plants. Appl Soil Ecol 28:203–215. doi:10.1016/j.apsoil.2004.08.004
Treonis AM, Cook R, Dawson L, Grayston SJ, Mizen T (2007) Effects of a plant parasitic nematode (Heterodera trifolii) on clover roots and soil microbial communities. Biol Fertil Soils 43:541–548. doi:10.1007/s00374-006-0133-2
Troelstra S, Wagenaar R, Smant W, Paters B (2001) Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors. New Phytol 150:697–706. doi:10.1046/j.1469-8137.2001.00133.x
Tscharntke T, Hawkins B (2002) Multitrophic level interactions. Princeton University Press, New Jersey
van Dam NM, Harvey JA, Wäckers FL, Bezemer TM, Van Der Putten WH, Vet LEM (2003) Interactions between aboveground and belowground induced responses against phytophages. Basic Appl Ecol 4:63–77
van Ruijven J, De Deyn G, Raaijmakers CE, Berendse F, van der Putten W (2005) Interactions between spatially separated herbivores indirectly alter plant diversity. Ecol Lett 8:30–37. doi:10.1111/j.1461-0248.2004.00688.x
van Tol R, van der Sommen A, Boff M, van Bezooijen J, Sabelis M, Smits P (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294. doi:10.1046/j.1461-0248.2001.00227.x
Venette R, Ferris H (1998) Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biol Biochem 30:949–960
Venette R, Mostafa F, Ferris H (1997) Trophic interactions between bacterial-feeding nematodes in plant rhizospheres and the nematophagous fungusHirsutella rhossiliensis to suppressHeterodera schachtii. Plant Soil 191:213–223
Vercauteren I, Engler JD, De Groodt R, Gheysen G (2002) An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. Mol Plant Microbe Interact 15:404–407. doi:10.1094/MPMI.2002.15.4.404
Veronico P, Jones J, Di Vito M, De Giorgi C (2001) Horizontal transfer of a bacterial gene involved in polyglutamate biosynthesis to the plant-parasitic nematode Meloidogyne artiellia. FEBS Lett 508:470–474. doi:10.1016/S0014-5793(01)03132-5
Vestergård M, Bjørnlund L, Henry F, Ronn R (2007) Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295:115–125. doi:10.1007/s11104-007-9267-8
Wardle D (2002) Communities and ecosystems: Linking the aboveground and belowground components. Princeton University Press, New Jersey
Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. Oecologia 93:303–306
Weekers PHH, Bodelier PLE, Wijen JPH, Vogels GD (1993) Effects of grazing by the free-living soil amobaeAcanthamoeba castellanii, Acanthamoeba polyphaga, andHartmannella vermiformis on various bacteria. Appl Environ Microbiol 59:2317–2319
Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Leeuwenhoek 81:327–341
Weitere M, Bergfeld T, Rice SA, Matz G, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601. doi:10.1111/j.1462-2920.2005.00851.x
Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854. doi:10.1128/AEM.67.12.5849-5854.2001
Wilkinson DM (2008) Testate amoebae and nutrient cycling: peering into the black box of soil ecology. Trends Ecol Evol 23:596–599. doi:10.1016/j.tree.2008.07.006
Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6:327–333. doi:10.1016/S1369-5266(03)00059-1
Wood J, Tordoff GM, Jones TH, Boddy L (2006) Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycol Res 110:985–993. doi:10.1016/j.mycres.2006.05.013
Wurst S, Jones H (2003) Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia (Jena) 47:91–97. doi:10.1078/0031-4056-00173
Wurst S, Langel R, Reineking A, Bonkowski M, Scheu S (2003) Effects of earthworms and organic litter distribution on plant performance and aphid reproduction. Oecologia 137:90–96
Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169–176
Wyss U (2002) Feeding behaviour of plant parasitic nematodes. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 462–513
Yeates GW, Saggar S, Denton CS, Mercer CF (1998) Impact of clover cyst nematode (Heterodera trifolii) infection on soil microbial activity in the rhizosphere of white clover (Trifolium repens)—A pulse-labelling experiment. Nematologica 44:81–90
Yeates G, Bardgett R, Mercer C, Saggar S, Feltham C (1999a) Increase in 14C-carbon translocation to the soil microbial biomass when five species of pant parasitic nematodes infect roots of white clover. Nematology 1:295–300. doi:10.1163/156854199508298
Yeates GW, Saggar S, Hedley CB, Mercer CF (1999b) Increase in 14C-carbon translocation to the soil microbial biomass when five species of plant-parasitic nematodes infect roots of white clover. Nematology 1:295–300. doi:10.1163/156854199508298
Young IM, Griffiths BG, Robertson WM (1996) Continuous foraging by bacterial-feeding nematodes. Nematologica 42:378–382
Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703. doi:10.1128/MMBR.00001-06
Zandonadi D, Canellas L, Façanha A (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H + pumps activation. Planta 225:1583–1595. doi:10.1007/s00425-006-0454-2
Zwart KB, Kuikman PJ, Van Veen JA (1994) Rhizosphere protozoa: Their significance in nutrient dynamics. In: Darbyshire J (ed) Soil protozoa. CAB International, Wallingford, pp 93–121
Acknowledgements
We are very grateful to Prof. Dr. Donald Phillips and Dr. Tama Fox, Plant Sciences Department, University of California, Davis, USA, for their collaborative support for MB and for providing the data on DAPG production by pseudomonads for this review.
Author information
Authors and Affiliations
Department of Terrestrial Ecology, University of Cologne, Zoological Institute, Weyertal 119, 50931, Cologne, Germany
Michael Bonkowski
Research Institute for Development, IRD-SeqBio/SupAgro, 2 place Viala, Bât. 12, 34060, Montpellier cedex 1, France
Cécile Villenave
Teagasc, Environment Research Centre, Johnstown Castle, Wexford, Co., Wexford, Ireland
Bryan Griffiths
- Michael Bonkowski
You can also search for this author inPubMed Google Scholar
- Cécile Villenave
You can also search for this author inPubMed Google Scholar
- Bryan Griffiths
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMichael Bonkowski.
Additional information
Responsible Editor: Phillipe Lemanceau.
Rights and permissions
About this article
Cite this article
Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots.Plant Soil321, 213–233 (2009). https://doi.org/10.1007/s11104-009-0013-2
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative