Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Advanced ACTPol Cryogenic Detector Arrays and Readout

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28–230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. M.D. Niemack et al., Proc. SPIE7741, 77411S (2010)

    Article  Google Scholar 

  2. P.A.R. Ade et al., Astrophys. J.792, 62 (2014). doi:10.1088/0004-637X/792/1/62

    Article ADS  Google Scholar 

  3. Z. Staniszewski et al., J. Low Temp. Phys.167, 827 (2012). doi:10.1007/s10909-012-0510-1

    Article ADS  Google Scholar 

  4. K. Arnold et al., Proc. SPIE7741, 77411E (2010)

    Article  Google Scholar 

  5. J.E. Austermann et al., Proc. SPIE8452, 84521E (2012)

    Article  Google Scholar 

  6. W. Grainger et al., Proc. SPIE7020, 70202N (2008)

    Article  Google Scholar 

  7. A. Fraisse et al., JCAP2013(04), 047 (2013). doi:10.1088/1475-7516/2013/04/047

    Article  Google Scholar 

  8. J.A. Tauber et al., A&A520, A1 (2010). doi:10.1051/0004-6361/200912983

    Article ADS  Google Scholar 

  9. T. Essinger-Hileman et al., Proc. SPIE9153, 91531I (2014)

    Article  Google Scholar 

  10. S. Galli et al., Phys. Rev. D90, 063504 (2014). doi:10.1103/PhysRevD.90.063504

    Article ADS  Google Scholar 

  11. E. Calabrese et al., JCAP2014(08), 010 (2014). doi:10.1088/1475-7516/2014/08/010

    Article  Google Scholar 

  12. D. Hanson et al., Phys. Rev. Lett.111, 141301 (2013). doi:10.1103/PhysRevLett.111.141301

  13. P.A.R. Ade et al., Phys. Rev. Lett.112, 241101 (2014). doi:10.1103/PhysRevLett.112.241101

  14. S. Naess et al., JCAP10, 007 (2014). doi:10.1088/1475-7516/2014/10/007

    Article ADS  Google Scholar 

  15. M. Madhavacheril et al., Phys. Rev. Lett.114, 151302 (2015). doi:10.1103/PhysRevLett.114.151302

  16. R. Allison et al., MNRAS451, 849 (2015). doi:10.1093/mnras/stv991

    Article ADS  Google Scholar 

  17. A. van Engelen et al., Astrophys. J.808(1), 7 (2015). doi:10.1088/0004-637X/808/1/7

    Article ADS  Google Scholar 

  18. E. Grace et al., Proc. SPIE9153, 915310 (2014)

    Article  Google Scholar 

  19. S.P. Ho, et al., In this Special Issue LTD16 in J. Low Temp. Phys

  20. R. Datta et al., In this Special Issue LTD16 in J. Low Temp. Phys

  21. J. Delabrouille et al., A&A553, A96 (2013). doi:10.1051/0004-6361/201220019

    Article ADS  Google Scholar 

  22. J.E. Carlstrom, G.P. Holder, E.D. Reese, Annu. Rev. Astron. Astrophys.40, 643 (2002). doi:10.1146/annurev.astro.40.060401.093803

    Article ADS  Google Scholar 

  23. E.-M. Mueller et al., Phys. Rev. D92, 063501 (2015). doi:10.1103/PhysRevD.92.063501

    Article ADS MathSciNet  Google Scholar 

  24. K.M. Smith et al., AIP Conf. Proc.1141(1), 121 (2009)

    Article ADS  Google Scholar 

  25. Z. Ivezic et al.,arXiv:0805.2366 (2008)

  26. S. Miyazaki et al., Proc. SPIE6269, 62690B (2006)

    Article  Google Scholar 

  27. B.L. Flaugher et al., Proc. SPIE8446, 844611 (2012)

    Article  Google Scholar 

  28. A. Merloni et al.,arXiv:1209.3114 (2012)

  29. K.S. Dawson et al., Astron. J.145, 10 (2013). doi:10.1088/0004-6256/145/1/10

    Article ADS  Google Scholar 

  30. M. Levi et al.,arXiv:1308.0847 (2013)

  31. D.S. Swetz et al., Astrophys. J. Suppl. Ser.194(2), 41 (2011). doi:10.1088/0067-0049/194/2/41

    Article ADS  Google Scholar 

  32. A. Kusaka et al., Rev. Sci. Instrum.85(2), 024501 (2014). doi:10.1063/1.4862058

    Article ADS  Google Scholar 

  33. S. Hanany et al., Appl. Opt.44(22), 4666 (2005). doi:10.1364/AO.44.004666

    Article ADS  Google Scholar 

  34. D. Li et al., In this Special Issue LTD16 in J. Low Temp. Phys

  35. R. Datta et al., Appl. Opt.52(36), 8747 (2013). doi:10.1364/AO.52.008747

    Article ADS  Google Scholar 

  36. R. Datta et al., J. Low Temp. Phys.176(5–6), 670 (2014). doi:10.1007/s10909-014-1134-4

    ADS  Google Scholar 

  37. S. Duff et al., In this Special Issue LTD16 in J. Low Temp. Phys

  38. S.W. Deiker et al., Appl. Phys. Lett.85(11), 2137 (2004). doi:10.1063/1.1789575

    Article ADS  Google Scholar 

  39. J. Austermann et al., In this Special Issue LTD16 in J. Low Temp. Phys

  40. E. Battistelli et al., J. Low Temp. Phys.151(3–4), 908 (2008). doi:10.1007/s10909-008-9772-z

    Article ADS  Google Scholar 

  41. W.S. Holland et al., MNRAS430, 2513 (2013). doi:10.1093/mnras/sts612

    Article ADS  Google Scholar 

  42. J. Beyer, D. Drung, Supercond. Sci. Technol.21(10), 105022 (2008)

    Article ADS  Google Scholar 

  43. R. Doriese et al., In this Special Issue LTD16 in J. Low Temp. Phys

  44. C. Pappas et al., In this Special Issue LTD16 in J. Low Temp. Phys

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation through Awards 1312380 and 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards.

Author information

Authors and Affiliations

  1. Department of Physics, Cornell University, Ithaca, NY, 14853, USA

    S. W. Henderson, F. De Bernardis, P. A. Gallardo, B. J. Koopman, M. D. Niemack, J. R. Stevens & E. M. Vavagiakis

  2. Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK

    R. Allison & J. Dunkley

  3. NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO, 80305, USA

    J. Austermann, J. A. Beall, D. Becker, S. M. Duff, G. C. Hilton, J. Hubmayr, D. Li & J. Van Lanen

  4. Department of Physics, University of Michigan, Ann Arbor, 48103, USA

    T. Baildon, K. P. Coughlin, R. Datta, F. Hills, J. McMahon & C. Munson

  5. Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ, 08544, USA

    N. Battaglia, E. Calabrese, M. Hasselfield, R. Hloẑek & D. N. Spergel

  6. Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8, Canada

    J. R. Bond & A. van Engelen

  7. Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ, 08544, USA

    S. K. Choi, K. T. Crowley, E. Grace, S. P. Ho, P. Niraula, L. A. Page, C. G. Pappas, M. Salatino, A. Schillaci, S. M. Simon & S. T. Staggs

  8. Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104, USA

    M. J. Devlin, F. Nati, B. L. Schmitt & J. T. Ward

  9. Departamento de Astronomía y Astrofísica, Ponticía Universidad Católica, Casilla 306, Santiago 22, Chile

    R. Dünner

  10. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

    A. D. Hincks

  11. Department of Physics, Florida State University, Tallahassee, FL, 32306, USA

    K. Huffenberger

  12. Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8019, USA

    J. P. Hughes

  13. Department of Physics, Stanford University, Stanford, CA, 94305-4085, USA

    K. D. Irwin

  14. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260, USA

    A. B. Kosowsky

  15. SLAC National Accelerator Laboratory, 2575 Sandy Hill Road, Menlo Park, CA, 94025, USA

    D. Li

  16. Dunlap Institute, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4, Canada

    L. Newburgh

  17. Physics and Astronomy Department, Stony Brook University, Stony Brook, NY, 11794, USA

    N. Sehgal

  18. Berkeley Center for Cosmological Physics, University of California, Berkeley, CA, 94720, USA

    B. D. Sherwin

  19. Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041, South Africa

    J. L. Sievers

  20. Department of Physics, West Chester University of Pennsylvania, West Chester, PA, 19383, USA

    R. Thornton

  21. NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

    E. J. Wollack

  22. Sociedad Radiosky Asesorías de Ingeniería Limitada Lincoyán 54, Depto 805, Concepción, Chile

    A. Schillaci

Authors
  1. S. W. Henderson
  2. R. Allison
  3. J. Austermann
  4. T. Baildon
  5. N. Battaglia
  6. J. A. Beall
  7. D. Becker
  8. F. De Bernardis
  9. J. R. Bond
  10. E. Calabrese
  11. S. K. Choi
  12. K. P. Coughlin
  13. K. T. Crowley
  14. R. Datta
  15. M. J. Devlin
  16. S. M. Duff
  17. J. Dunkley
  18. R. Dünner
  19. A. van Engelen
  20. P. A. Gallardo
  21. E. Grace
  22. M. Hasselfield
  23. F. Hills
  24. G. C. Hilton
  25. A. D. Hincks
  26. R. Hloẑek
  27. S. P. Ho
  28. J. Hubmayr
  29. K. Huffenberger
  30. J. P. Hughes
  31. K. D. Irwin
  32. B. J. Koopman
  33. A. B. Kosowsky
  34. D. Li
  35. J. McMahon
  36. C. Munson
  37. F. Nati
  38. L. Newburgh
  39. M. D. Niemack
  40. P. Niraula
  41. L. A. Page
  42. C. G. Pappas
  43. M. Salatino
  44. A. Schillaci
  45. B. L. Schmitt
  46. N. Sehgal
  47. B. D. Sherwin
  48. J. L. Sievers
  49. S. M. Simon
  50. D. N. Spergel
  51. S. T. Staggs
  52. J. R. Stevens
  53. R. Thornton
  54. J. Van Lanen
  55. E. M. Vavagiakis
  56. J. T. Ward
  57. E. J. Wollack

Corresponding author

Correspondence toS. W. Henderson.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp