Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

An Antiaphrodisiac inHeliconius melpomene Butterflies

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gilbert (1976) suggested that male-contributed odors of mated females ofHeliconius erato could enforce monogamy. We investigated the pheromone system of a relative,Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-β-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeledD-13C6– glucose. They produced13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that β-ocimene is an antiaphrodisiac pheromone ofH. melpomene.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Andersson, S. and Dobson, H. E. M. 2003a. Antennal responses to floral scents in the butterflyHeliconius melpomene.J. Chem. Ecol. 29:2319–2330.

    Article PubMed CAS  Google Scholar 

  • Andersson, S. and Dobson, H. E. M. 2003b. Behavioral foraging responses by the butterflyHeliconius melpomene toLantana camara floral scent.J. Chem. Ecol. 29:2303–2318.

    Article PubMed CAS  Google Scholar 

  • Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2000. Sexual cooperation and conflict in butterflies: A male-transferred anti-aphrodisiac reduces harassment of recently mated females.Proc. R. Soc. Lond. B 267:1271–1275.

    Article CAS  Google Scholar 

  • Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition.Botan. J. Linn. Soc. 140:129–153.

    Article  Google Scholar 

  • Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2003. Antiaphrodisiacs in pierid butterflies: A theme with variation!J. Chem. Ecol. 29:1489–1499.

    Article PubMed CAS  Google Scholar 

  • Bateman, P. W., Ferguson, J. W. H., and Yetman, C. A. 2006. Courtship and copulation, but not ejaculates, reduce the longevity of female field crickets (Gryllus bimaculatus).J. Zool. 268:341–346.

    Article  Google Scholar 

  • Boggs, C. L., Smiley, J. T., and Gilbert, L. E. 1981. Patterns of pollen exploitation byHeliconius butterflies.Oecologia 48:284–289.

    Article  Google Scholar 

  • Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies.Entomol. Exp. Appl. 24:264–277.

    Article  Google Scholar 

  • Boppré, M. 1984. Chemically mediated interactions between butterflies, pp. 259–275, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. GB-London: Academic Press, reprinted edition 1989 by Princeton University Press.

    Google Scholar 

  • Cane, D. E. 1999. Isoprenoid biosynthesis: Overview, pp. 1–13, in D. Barton, K. Nakanishi, O. Meth-Cohn, D. E. Cane (eds.). Comprehensive Natural Products Chemistry Vol. 2. Elsevier, Amsterdam.

  • Clutton-Block, T. and Langley, P. 1997. Persistent courtship reduces male and female longevity in captive tsetse fliesGlossina morsitans morsitans Westwood (Diptera: Glossinidae).Behav. Ecol. 8:392–395.

    Article  Google Scholar 

  • Conner, W. E., Boada, R., Schroeder, F. C., Gonzalez, A., Meinwald, J., and Eisner, T. 2000. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate.Proc. Natl. Acad. Sci. USA 97:14406–14411.

    Google Scholar 

  • Cook, S. E., Vernon, J. G., Bateson, M., and Guilford, T. 1994. Mate choice in the polymorphic African swallowtail butterfly,Papilio dardanus: male-like female may avoid sexual harassment.Anim. Behav. 47:389–397.

    Article  Google Scholar 

  • Danci, A., Gries, R., Schaefer, P. W., and Gries, G. 2006. Evidence for four-component close-range sex pheromone in the parasitic waspGlyptapanteles flavicoxis.J. Chem. Ecol. 32:1539–1554.

    Article PubMed CAS  Google Scholar 

  • Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005. A novel type of geosmin biosynthesis in myxobacteria.J. Org. Chem. 70:5174–5182.

    Article PubMed CAS  Google Scholar 

  • Drutu, I., Krygowski, E. S., and Wood, J. L. 2001. Reactive enols in synthesis 2. Synthesis of (+)-latifolic acid and (+)-latifoline.J. Org. Chem. 66:7025–7029.

    Article PubMed CAS  Google Scholar 

  • Eisenreich, W., Bacher, A., Arigoni, D., and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway.Cell. Mol. Life Sci. 61:1401–1426.

  • Eltringham, M. A. 1925. On the abdominal glands inHeliconius (Lepidoptera).Trans. Entomol. Soc. Lond. 269–275.

  • Emsley, M. G. 1963. A morphological study of image Heliconiinae (Lep.: Nymphalidae) with a consideration of the evolutionary relationships within the group.Zoologica 48:85–131.

    Google Scholar 

  • Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies.J. Chem. Ecol. 33:25–42.

    Article PubMed CAS  Google Scholar 

  • Estrada, C. and Jiggins, C. D. 2002. Patterns of pollen feeding and habitat preference amongHeliconius species.Ecol. Entomol. 27:448–456.

    Article  Google Scholar 

  • Franklin, C. L., Li, H., and Martin, S. F. 2003. Design, Synthesis, and Evaluation of water-soluble phospholipid analogues as inhibitors of phospholipase C fromBacillus cereus. J. Org. Chem. 68:7298–7307.

    Article PubMed CAS  Google Scholar 

  • Gilbert, L. E. 1976. Postmating female odor inHeliconius butterflies: A male-contributed antiaphrodisiac?Science 193:419–420.

    Article PubMed CAS  Google Scholar 

  • Happ, G. 1969. Multiple sex pheromones of the mealworm beetle,Tenebrio molitor L.Nature 222:180–181.

    Article PubMed CAS  Google Scholar 

  • Jetz, W., Rowe, C., and Guilford, T. 2001. Non-warning odors trigger innate color aversions—as long as they are novel.Behav. Ecol. 12:134–139.

    Article  Google Scholar 

  • Jiggins, C. D., Estrada, C., and Rodrigues, A. 2004. Mimicry and the evolution of premating isolation inHeliconius melpomene Linnaeus.J. Evol. Biol. 17:680–691.

    Article PubMed CAS  Google Scholar 

  • Kaye, H., Mackintosch, N. J., Rothschild, M., and Moore, B. P. 1989. Odour of pyrazine potentiates an association between environmental cues and unpalatable taste.Anim. Behav. 37:1–6.

    Article  Google Scholar 

  • Kukuk, P. 1985. Evidence for an antiaphrodisiac in the sweat beeLasioglossum (Dialictus)zephyrum.Science 227:656–657.

    Article PubMed CAS  Google Scholar 

  • Lindström, L., Rowe, C., and Guilford, T. 2001. Pyrazine odour makes visually conspicuous prey aversive.Proc. R. Soc. Lond B. 268:159–162.

    Article  Google Scholar 

  • Matsushita, H. and Negishi, E. 1982. Palladium-catalyzed reactions of allylic electrophiles with organometallic reagents. A regioselective 1,4-elimination and a regio- and stereoselective reduction of allylic derivatives.J. Org. Chem. 47:4161–4165.

    Article CAS  Google Scholar 

  • Miyakado, M., Meinwald, J., and Gilbert, L. E. 1989. (R)-(Z,E)-9,11-Octadecadien-13-olide: An intriguing lactone fromHeliconius pachinus (Lepidoptera).Experientia 45:1006–1008.

    Article PubMed CAS  Google Scholar 

  • Moore, B. P., Brown, W. V., and Rothschild, M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics.Chemoecology 1:43–51.

    Article CAS  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 75B:65–73.

    CAS  Google Scholar 

  • Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 82B:745–749.

    CAS  Google Scholar 

  • Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores.Plant Physiol. 121:325–332.

    Article PubMed CAS  Google Scholar 

  • Piel, J., Donath, J., Bandemer, K., and Boland, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles.Angew. Chem. Int. Ed. 37:2478–2481.

    Article CAS  Google Scholar 

  • Ross, G. N., Fales, H. M., Lloyd, H. A., Jones, T., Sokoloski, E. A., Marshall-Batty, K., and Blum, M. S. 2001. Novel chemistry of abdominal defensive glands of nymphalid butterflyAgraulis vanillae.J. Chem. Ecol. 27:1219–1228.

    Article PubMed CAS  Google Scholar 

  • Schulz, S., Beccaloni, G., Nishida, R., Roisin, Y., Vane-Wright, R. I., and Mcneil, J. N. 1998. 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera.Z. Naturforsch. 53c:107–116.

    Google Scholar 

  • Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae).Biochem. Syst. Ecol. 32:699–713.

    Article CAS  Google Scholar 

  • Schulz, S., Yildizhan, S., Stritzke, K., Estrada, C., and Gilbert, L. E. 2007. Macrolides from the scent glands of the tropical butterfliesHeliconius cydno andHeliconius pachinus. Org. Biomol. Chem. 5:3434–3441.

    Article PubMed CAS  Google Scholar 

  • Scott, D. 1986. Sexual mimicry regulates the attractiveness of matedDrosophila melanogaster females.Proc. Natl. Acad. Sci. USA 83:8429–8433.

    Article PubMed CAS  Google Scholar 

  • Simmons, L. W. 2001. Sperm Competition and Its Evolutionary Consequences in the Insects. Princeton University Press, Princeton and Oxford.

    Google Scholar 

  • Simonsen, T. J. 2006. Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini).Zool. Scripta 35:231–241.

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, J. 1969. Biometry. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Stavenga, D. G. 2002. Reflections on colourful ommatidia of butterfly eyes.J. Exp. Biol. 205:1077–1085.

    PubMed  Google Scholar 

  • Swihart, C. A. 1972. The neural basis of color vision in the butterfly, Heliconius erato.J. Insect Physiol. 18:1015–1025.

    Article  Google Scholar 

  • Thornhill, R. and Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.

    Google Scholar 

  • Tomalsky, M. D., Blum, M. S., Jones, T. H., Fales, H. M., Howard, D. F., and Passera, L. 1987. Chemistry and function of exocrine glands of the antsTapinoma melanocephalum andT. erraticum.J. Chem. Ecol. 13:253–263.

    Article  Google Scholar 

  • Wedell, N. 2005. Female receptivity in butterflies and moths.J. Exp. Biol. 208:3433–3440.

    Article PubMed  Google Scholar 

  • Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae).Biol. J. Linn. Soc. 68:557–578.

    Article  Google Scholar 

  • Williams, C. M. and Mander, L. N. 2001. Chromatography with silver nitrate.Tetrahedron 57:425–447.

    Article CAS  Google Scholar 

  • Zaccardi, G., Kelber, A., Sison-Mangus, M. P., and Briscoe, A. D. 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin.J. Exp. Biol. 209:1944–1955.

    Article PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Wartenberg, R. Watkins, S. Marout, and K. Busby for assisting rearing butterflies; the United States Department of Agriculture for import and rearing permits, and Costa Rica’s Ministerio del Ambiente y Energía for collection and exportation permits. This work was funded by the Deutsche Forschungsgemeinschaft and the University of Texas at Austin graduate program in Ecology, Evolution, and Behavior. This material is also based on work supported by the National Science Foundation and the Office of International Science and Engineering under grant No 0608167. Austin facilities were developed through grants from NSF and matching support from UT Austin to LEG.

Author information

Authors and Affiliations

  1. Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany

    Stefan Schulz & Selma Yildizhan

  2. Section of Integrative Biology, The University of Texas, Austin, TX, 78712, USA

    Catalina Estrada & Lawrence E. Gilbert

  3. Forstzoologisches Institut, Albert-Ludwigs-Universität, 79085, Freiburg i.Br., Germany

    Michael Boppré

Authors
  1. Stefan Schulz
  2. Catalina Estrada
  3. Selma Yildizhan
  4. Michael Boppré
  5. Lawrence E. Gilbert

Corresponding author

Correspondence toStefan Schulz.

Rights and permissions

About this article

Profiles

  1. Stefan SchulzView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp