1254Accesses
105Citations
43 Altmetric
5Mentions
Abstract
Gilbert (1976) suggested that male-contributed odors of mated females ofHeliconius erato could enforce monogamy. We investigated the pheromone system of a relative,Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-β-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeledD-13C6– glucose. They produced13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that β-ocimene is an antiaphrodisiac pheromone ofH. melpomene.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Andersson, S. and Dobson, H. E. M. 2003a. Antennal responses to floral scents in the butterflyHeliconius melpomene.J. Chem. Ecol. 29:2319–2330.
Andersson, S. and Dobson, H. E. M. 2003b. Behavioral foraging responses by the butterflyHeliconius melpomene toLantana camara floral scent.J. Chem. Ecol. 29:2303–2318.
Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2000. Sexual cooperation and conflict in butterflies: A male-transferred anti-aphrodisiac reduces harassment of recently mated females.Proc. R. Soc. Lond. B 267:1271–1275.
Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition.Botan. J. Linn. Soc. 140:129–153.
Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2003. Antiaphrodisiacs in pierid butterflies: A theme with variation!J. Chem. Ecol. 29:1489–1499.
Bateman, P. W., Ferguson, J. W. H., and Yetman, C. A. 2006. Courtship and copulation, but not ejaculates, reduce the longevity of female field crickets (Gryllus bimaculatus).J. Zool. 268:341–346.
Boggs, C. L., Smiley, J. T., and Gilbert, L. E. 1981. Patterns of pollen exploitation byHeliconius butterflies.Oecologia 48:284–289.
Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies.Entomol. Exp. Appl. 24:264–277.
Boppré, M. 1984. Chemically mediated interactions between butterflies, pp. 259–275, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. GB-London: Academic Press, reprinted edition 1989 by Princeton University Press.
Cane, D. E. 1999. Isoprenoid biosynthesis: Overview, pp. 1–13, in D. Barton, K. Nakanishi, O. Meth-Cohn, D. E. Cane (eds.). Comprehensive Natural Products Chemistry Vol. 2. Elsevier, Amsterdam.
Clutton-Block, T. and Langley, P. 1997. Persistent courtship reduces male and female longevity in captive tsetse fliesGlossina morsitans morsitans Westwood (Diptera: Glossinidae).Behav. Ecol. 8:392–395.
Conner, W. E., Boada, R., Schroeder, F. C., Gonzalez, A., Meinwald, J., and Eisner, T. 2000. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate.Proc. Natl. Acad. Sci. USA 97:14406–14411.
Cook, S. E., Vernon, J. G., Bateson, M., and Guilford, T. 1994. Mate choice in the polymorphic African swallowtail butterfly,Papilio dardanus: male-like female may avoid sexual harassment.Anim. Behav. 47:389–397.
Danci, A., Gries, R., Schaefer, P. W., and Gries, G. 2006. Evidence for four-component close-range sex pheromone in the parasitic waspGlyptapanteles flavicoxis.J. Chem. Ecol. 32:1539–1554.
Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005. A novel type of geosmin biosynthesis in myxobacteria.J. Org. Chem. 70:5174–5182.
Drutu, I., Krygowski, E. S., and Wood, J. L. 2001. Reactive enols in synthesis 2. Synthesis of (+)-latifolic acid and (+)-latifoline.J. Org. Chem. 66:7025–7029.
Eisenreich, W., Bacher, A., Arigoni, D., and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway.Cell. Mol. Life Sci. 61:1401–1426.
Eltringham, M. A. 1925. On the abdominal glands inHeliconius (Lepidoptera).Trans. Entomol. Soc. Lond. 269–275.
Emsley, M. G. 1963. A morphological study of image Heliconiinae (Lep.: Nymphalidae) with a consideration of the evolutionary relationships within the group.Zoologica 48:85–131.
Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies.J. Chem. Ecol. 33:25–42.
Estrada, C. and Jiggins, C. D. 2002. Patterns of pollen feeding and habitat preference amongHeliconius species.Ecol. Entomol. 27:448–456.
Franklin, C. L., Li, H., and Martin, S. F. 2003. Design, Synthesis, and Evaluation of water-soluble phospholipid analogues as inhibitors of phospholipase C fromBacillus cereus. J. Org. Chem. 68:7298–7307.
Gilbert, L. E. 1976. Postmating female odor inHeliconius butterflies: A male-contributed antiaphrodisiac?Science 193:419–420.
Happ, G. 1969. Multiple sex pheromones of the mealworm beetle,Tenebrio molitor L.Nature 222:180–181.
Jetz, W., Rowe, C., and Guilford, T. 2001. Non-warning odors trigger innate color aversions—as long as they are novel.Behav. Ecol. 12:134–139.
Jiggins, C. D., Estrada, C., and Rodrigues, A. 2004. Mimicry and the evolution of premating isolation inHeliconius melpomene Linnaeus.J. Evol. Biol. 17:680–691.
Kaye, H., Mackintosch, N. J., Rothschild, M., and Moore, B. P. 1989. Odour of pyrazine potentiates an association between environmental cues and unpalatable taste.Anim. Behav. 37:1–6.
Kukuk, P. 1985. Evidence for an antiaphrodisiac in the sweat beeLasioglossum (Dialictus)zephyrum.Science 227:656–657.
Lindström, L., Rowe, C., and Guilford, T. 2001. Pyrazine odour makes visually conspicuous prey aversive.Proc. R. Soc. Lond B. 268:159–162.
Matsushita, H. and Negishi, E. 1982. Palladium-catalyzed reactions of allylic electrophiles with organometallic reagents. A regioselective 1,4-elimination and a regio- and stereoselective reduction of allylic derivatives.J. Org. Chem. 47:4161–4165.
Miyakado, M., Meinwald, J., and Gilbert, L. E. 1989. (R)-(Z,E)-9,11-Octadecadien-13-olide: An intriguing lactone fromHeliconius pachinus (Lepidoptera).Experientia 45:1006–1008.
Moore, B. P., Brown, W. V., and Rothschild, M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics.Chemoecology 1:43–51.
Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 75B:65–73.
Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera).Comp. Biochem. Physiol. 82B:745–749.
Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores.Plant Physiol. 121:325–332.
Piel, J., Donath, J., Bandemer, K., and Boland, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles.Angew. Chem. Int. Ed. 37:2478–2481.
Ross, G. N., Fales, H. M., Lloyd, H. A., Jones, T., Sokoloski, E. A., Marshall-Batty, K., and Blum, M. S. 2001. Novel chemistry of abdominal defensive glands of nymphalid butterflyAgraulis vanillae.J. Chem. Ecol. 27:1219–1228.
Schulz, S., Beccaloni, G., Nishida, R., Roisin, Y., Vane-Wright, R. I., and Mcneil, J. N. 1998. 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera.Z. Naturforsch. 53c:107–116.
Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae).Biochem. Syst. Ecol. 32:699–713.
Schulz, S., Yildizhan, S., Stritzke, K., Estrada, C., and Gilbert, L. E. 2007. Macrolides from the scent glands of the tropical butterfliesHeliconius cydno andHeliconius pachinus. Org. Biomol. Chem. 5:3434–3441.
Scott, D. 1986. Sexual mimicry regulates the attractiveness of matedDrosophila melanogaster females.Proc. Natl. Acad. Sci. USA 83:8429–8433.
Simmons, L. W. 2001. Sperm Competition and Its Evolutionary Consequences in the Insects. Princeton University Press, Princeton and Oxford.
Simonsen, T. J. 2006. Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini).Zool. Scripta 35:231–241.
Sokal, R. R. and Rohlf, J. 1969. Biometry. W. H. Freeman and Company, San Francisco.
Stavenga, D. G. 2002. Reflections on colourful ommatidia of butterfly eyes.J. Exp. Biol. 205:1077–1085.
Swihart, C. A. 1972. The neural basis of color vision in the butterfly, Heliconius erato.J. Insect Physiol. 18:1015–1025.
Thornhill, R. and Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.
Tomalsky, M. D., Blum, M. S., Jones, T. H., Fales, H. M., Howard, D. F., and Passera, L. 1987. Chemistry and function of exocrine glands of the antsTapinoma melanocephalum andT. erraticum.J. Chem. Ecol. 13:253–263.
Wedell, N. 2005. Female receptivity in butterflies and moths.J. Exp. Biol. 208:3433–3440.
Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae).Biol. J. Linn. Soc. 68:557–578.
Williams, C. M. and Mander, L. N. 2001. Chromatography with silver nitrate.Tetrahedron 57:425–447.
Zaccardi, G., Kelber, A., Sison-Mangus, M. P., and Briscoe, A. D. 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin.J. Exp. Biol. 209:1944–1955.
Acknowledgments
We thank A. Wartenberg, R. Watkins, S. Marout, and K. Busby for assisting rearing butterflies; the United States Department of Agriculture for import and rearing permits, and Costa Rica’s Ministerio del Ambiente y Energía for collection and exportation permits. This work was funded by the Deutsche Forschungsgemeinschaft and the University of Texas at Austin graduate program in Ecology, Evolution, and Behavior. This material is also based on work supported by the National Science Foundation and the Office of International Science and Engineering under grant No 0608167. Austin facilities were developed through grants from NSF and matching support from UT Austin to LEG.
Author information
Authors and Affiliations
Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
Stefan Schulz & Selma Yildizhan
Section of Integrative Biology, The University of Texas, Austin, TX, 78712, USA
Catalina Estrada & Lawrence E. Gilbert
Forstzoologisches Institut, Albert-Ludwigs-Universität, 79085, Freiburg i.Br., Germany
Michael Boppré
- Stefan Schulz
Search author on:PubMed Google Scholar
- Catalina Estrada
Search author on:PubMed Google Scholar
- Selma Yildizhan
Search author on:PubMed Google Scholar
- Michael Boppré
Search author on:PubMed Google Scholar
- Lawrence E. Gilbert
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toStefan Schulz.
Rights and permissions
About this article
Cite this article
Schulz, S., Estrada, C., Yildizhan, S.et al. An Antiaphrodisiac inHeliconius melpomene Butterflies.J Chem Ecol34, 82–93 (2008). https://doi.org/10.1007/s10886-007-9393-z
Received:
Revised:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
Profiles
- Stefan SchulzView author profile


