Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Synthesis and characterization of tyramine-based hyaluronan hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hyaluronan is particularly attractive for tissue engineering and repair because it: (1) is a normal component of the extracellular matrices of most mammalian tissues; (2) contributes to the biological and physical functions of these tissues; and (3) possesses excellent biocompatibility and physiochemical properties. In the present study, we characterize a two-step enzymatic cross-linking chemistry for production of tyramine-based hyaluronan hydrogels using fluorophore-assisted carbohydrate electrophoresis, enzymatic digestion, and spectroscopy including absorbance, fluorescence and1H NMR. Substitution on hyaluronan of tyramine and other adducts from unproductive side reactions depends on the molar ratio of tyramine to carbodiimide used during the substitution (step 1) reaction. Results indicate that relatively low tyramine substitution is required to form stable hydrogels, leaving the majority of hyaluronan disaccharides unmodified. Sufficient native HA structure is maintained to allow recognition and binding by b-HABP, a HA binding complex typically found in normal cartilage biology. Hydrogels were formed from tyramine-substituted hyaluronan through a peroxidase-dependent cross-linking (step 2) reaction at hyaluronan concentrations of 2.5 mg/ml and above. Uncross-linked tyramine-substituted hyaluronan was characterized after hyaluronidase SD digestion. Cross-linked hydrogels showed increased resistance to digestion by testicular hyaluronidase and hyaluronidase SD with increasing hyaluronan concentration. Cells directly encapsulated within the hydrogels during hydrogel cross-linking remained metabolically active during 7 days of culture similar to cells cultured in monolayer.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. C. Vinatier, J. Guicheux, G. Daculsi, P. Layrolle, P. Weiss, Biomed. Mater. Eng.16, S107 (2006)

    PubMed CAS  Google Scholar 

  2. J.K. Suh, H.W. Matthew, Biomaterials 21, 2589 (2000). doi:10.1016/S0142-9612(00)00126-5

  3. P. Angele, R. Kujat, M. Nerlich, J. Yoo, V. Goldberg, B. Johnstone, Tissue Eng.5, 545 (1999). doi:10.1089/ten.1999.5.545

    Article PubMed CAS  Google Scholar 

  4. T.C. Laurent, U.B. Laurent, J.R. Fraser, Immunol. Cell Biol.74, A1 (1996). doi:10.1038/icb.1996.32

    Article PubMed CAS  Google Scholar 

  5. V. Gupta, J.A. Werdenberg, T.L. Blevins, K.J. Grande-Allen, Tissue Eng.13, 41 (2007). doi:10.1089/ten.2006.0091

    Article PubMed CAS  Google Scholar 

  6. W.S. Turner, E. Schmelzer, R. McClelland, E. Wauthier, W. Chen, L.M. Reid, J. Biomed. Mater. Res. B: Appl. Biomater.82, 156 (2007). doi:10.1002/jbm.b.30717

    PubMed  Google Scholar 

  7. X. Jia, Y. Yeo, R.J. Clifton, T. Jiao, D.S. Kohane, J.B. Kobler et al., Biomacromolecules7, 3336 (2006). doi:10.1021/bm0604956

    Article PubMed CAS  Google Scholar 

  8. Y. Luo, K.R. Kirker, G.D. Prestwich, Modification of natural polymers: hyaluronic acid, ed. by A. Atala, R. Lanza, inMethods of Tissue Engineering (Academic Press, San Diego, 2001), pp. 539–553

  9. N.E. Larsen, C.T. Pollak, K. Reiner, E. Leshchiner, E.A. Balazs, J. Biomed. Mater. Res.27, 1129 (1993). doi:10.1002/jbm.820270903

    Article PubMed CAS  Google Scholar 

  10. L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo et al., Biomaterials14, 1154 (1993). doi:10.1016/0142-9612(93)90160-4

    Article PubMed CAS  Google Scholar 

  11. J.J. Young, K.M. Cheng, T.L. Tsou, H.W. Liu, H.J. Wang, J. Biomater. Sci. Polym. Ed.15, 767 (2004). doi:10.1163/156856204774196153

    Article PubMed CAS  Google Scholar 

  12. D.L. Nettles, T.P. Vail, M.T. Morgan, M.W. Grinstaff, L.A. Setton, Ann. Biomed. Eng.32, 391 (2004). doi:10.1023/B:ABME.0000017552.65260.94

    Article PubMed  Google Scholar 

  13. X.Z. Shu, Y. Liu, Y. Luo, M.C. Roberts, G.D. Prestwich, Biomacromolecules3, 1304 (2002). doi:10.1021/bm025603c

    Article PubMed CAS  Google Scholar 

  14. J.L. Vanderhooft, B.K. Mann, G.D. Prestwich, Biomacromolecules8, 2883 (2007). doi:10.1021/bm0703564

    Article PubMed CAS  Google Scholar 

  15. J. Luo, C. Pardin, X.X. Zhu, W.D. Lubell, J. Comb. Chem.9, 582 (2007). doi:10.1021/cc060132+

    Article PubMed CAS  Google Scholar 

  16. R.N. Chen, H.O. Ho, M.T. Sheu, Biomaterials26, 4229 (2005). doi:10.1016/j.biomaterials.2004.11.012

    Article PubMed CAS  Google Scholar 

  17. E.P. Broderick, D.M. O’Halloran, Y.A. Rochev, M. Griffin, R.J. Collighan, A.S. Pandit, J. Biomed. Mater. Res. B: Appl. Biomater.72, 37 (2005). doi:10.1002/jbm.b.30119

    Article PubMed  Google Scholar 

  18. M.E. Jones, P.B. Messersmith, Biomaterials28, 5215 (2007). doi:10.1016/j.biomaterials.2007.08.026

    Article PubMed CAS  Google Scholar 

  19. T.J. Sanborn, P.B. Messersmith, A.E. Barron, Biomaterials23, 2703 (2002). doi:10.1016/S0142-9612(02)00002-9

    Article PubMed CAS  Google Scholar 

  20. S. Sakai, K. Kawakami, Acta Biomater.3, 495 (2007). doi:10.1016/j.actbio.2006.12.002

    Article PubMed CAS  Google Scholar 

  21. R. Jin, C. Hiemstra, Z. Zhong, J. Feijen, Biomaterials28, 2791 (2007). doi:10.1016/j.biomaterials.2007.02.032

    Article PubMed CAS  Google Scholar 

  22. Y. Ogushi, S. Sakai, K. Kawakami, J. Biosci. Bioeng.104, 30 (2007). doi:10.1263/jbb.104.30

    Article PubMed CAS  Google Scholar 

  23. S.J. Sophia, A. Singh, D.L. Kaplan, J. Macromol. Sci, Part A39, 1151 (2002)

    Google Scholar 

  24. B. Kalra, A. Kumar, R.A. Gross, Polym. Reprints41, 1805 (2000)

    Google Scholar 

  25. J. Chan, A. Darr, D. Alam, A. Calabro, Am. J. Cosmet. Surg.22, 105 (2005)

    Google Scholar 

  26. K. Kamohara, M. Banbury, A. Calabro, Z.B. Popovic, A. Darr, Y. Ootaki et al., Heart Surg. Forum9, 888 (2006). doi:10.1532/HSF98.20061075

    Article  Google Scholar 

  27. M. Kurisawa, J.E. Chung, Y.Y. Yang, S.J. Gao, H. Uyama, Chem. Commun. (Camb.), 4312 (2005). doi:10.1039/b506989 k

  28. N. Blumenkrantz, G. Asboe-Hansen, Anal. Biochem.54, 484 (1973). doi:10.1016/0003-2697(73)90377-1

    Article PubMed CAS  Google Scholar 

  29. A. Calabro, M. Benavides, M. Tammi, V.C. Hascall, R.J. Midura, Glycobiology10, 273 (2000). doi:10.1093/glycob/10.3.273

    Article PubMed CAS  Google Scholar 

  30. A. Calabro, V.C. Hascall, R.J. Midura, Glycobiology10, 283 (2000). doi:10.1093/glycob/10.3.283

    Article PubMed CAS  Google Scholar 

  31. A. Calabro, R. Midura, A. Wang, L. West, A. Plaas, V.C. Hascall, Osteoarthr. Cartilage 9(Suppl A), S16 (2001)

  32. A. Calabro, V.C. Hascall, B. Caterson, Arch. Biochem. Biophys.298, 349 (1992). doi:10.1016/0003-9861(92)90421-R

    Article PubMed CAS  Google Scholar 

  33. W. Selbi, C. de la Motte, V. Hascall, A. Phillips, J. Am. Soc. Nephrol.15, 1199 (2004). doi:10.1097/01.ASN.0000125619.27422.8E

    Article PubMed CAS  Google Scholar 

  34. A. Wang, V.C. Hascall, J. Biol. Chem.279, 10279 (2004). doi:10.1074/jbc.M312045200

    Article PubMed CAS  Google Scholar 

  35. M. Aslam, A. Dent,Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences (Macmillan Reference Ltd., London, 1998)

    Google Scholar 

  36. D. Sehgal, I.K. Vijay, Anal. Biochem.218, 87 (1994). doi:10.1006/abio.1994.1144

    Article PubMed CAS  Google Scholar 

  37. Q.P. Lei, D.H. Lamb, A.G. Shannon, X. Cai, R.K. Heller, M. Huang et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.813, 103 (2004). doi:10.1016/j.jchromb.2004.09.015

    Article PubMed CAS  Google Scholar 

  38. T. Matsumoto, E.E. Nieuwenhuis, R.L. Cisneros, B. Ruiz-Perez, K. Yamaguchi, R.S. Blumberg et al., J. Med. Microbiol.53, 97 (2004). doi:10.1099/jmm.0.05386-0

    Article PubMed CAS  Google Scholar 

  39. B. Ruiz-Perez, R.L. Cisneros, T. Matsumoto, R.J. Miller, G. Vasios, P. Calias et al., J. Infect. Dis.188, 378 (2003). doi:10.1086/376556

    Article PubMed CAS  Google Scholar 

  40. S.M. Holmbeck, P.A. Petillo, L.E. Lerner, Biochemistry33, 14246 (1994). doi:10.1021/bi00251a037

    Article PubMed CAS  Google Scholar 

  41. A.J. Gross, I.W. Sizer, J. Biol. Chem.234, 1611 (1959)

    PubMed CAS  Google Scholar 

  42. K.G. Welinder, Biochim. Biophys. Acta1080, 215 (1991)

    PubMed CAS  Google Scholar 

  43. M.D. Berry, J. Neurochem.90, 257 (2004). doi:10.1111/j.1471-4159.2004.02501.x

    Article PubMed CAS  Google Scholar 

  44. S.O. Andersen, Insect Biochem. Mol. Biol.34, 459 (2004). doi:10.1016/j.ibmb.2004.02.006

    Article PubMed CAS  Google Scholar 

  45. T.G. Huggins, M.W. Staton, D.G. Dyer, N.J. Detorie, M.D. Walla, J.W. Baynes et al., Ann. NY Acad. Sci.663, 436 (1992). doi:10.1111/j.1749-6632.1992.tb38692.x

    Article PubMed CAS ADS  Google Scholar 

  46. U. auf dem Keller, A. Kumin, S. Braun, S. Werner, J. Invest. Dermatol. Symp. Proc. 11, 106 (2006). doi:10.1038/sj.jidsymp.5650001

    Google Scholar 

  47. K.J. Davies, Biochem. Soc. Symp.61, 1 (1995)

    PubMed CAS  Google Scholar 

  48. L.L. Faltz, C.B. Caputo, J.H. Kimura, J. Schrode, V.C. Hascall, J. Biol. Chem.254, 1381 (1979)

    PubMed CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mizutani Foundation for Glycoscience and the Cleveland Clinic for their generous financial support. The authors would also like to acknowledge Christine Harris, Christine Roche, and Melanie Moore for their technical assistance, and Dr. Thomas Gerkin for his contribution to the NMR data.

Author information

Authors and Affiliations

  1. Department of Biomedical Engineering, Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA

    Aniq Darr & Anthony Calabro

  2. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA

    Aniq Darr

Authors
  1. Aniq Darr
  2. Anthony Calabro

Corresponding author

Correspondence toAnthony Calabro.

Rights and permissions

About this article

Cite this article

Darr, A., Calabro, A. Synthesis and characterization of tyramine-based hyaluronan hydrogels.J Mater Sci: Mater Med20, 33–44 (2009). https://doi.org/10.1007/s10856-008-3540-0

Download citation

Keywords

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp