3811Accesses
151Citations
12 Altmetric
Abstract
Hyaluronan is particularly attractive for tissue engineering and repair because it: (1) is a normal component of the extracellular matrices of most mammalian tissues; (2) contributes to the biological and physical functions of these tissues; and (3) possesses excellent biocompatibility and physiochemical properties. In the present study, we characterize a two-step enzymatic cross-linking chemistry for production of tyramine-based hyaluronan hydrogels using fluorophore-assisted carbohydrate electrophoresis, enzymatic digestion, and spectroscopy including absorbance, fluorescence and1H NMR. Substitution on hyaluronan of tyramine and other adducts from unproductive side reactions depends on the molar ratio of tyramine to carbodiimide used during the substitution (step 1) reaction. Results indicate that relatively low tyramine substitution is required to form stable hydrogels, leaving the majority of hyaluronan disaccharides unmodified. Sufficient native HA structure is maintained to allow recognition and binding by b-HABP, a HA binding complex typically found in normal cartilage biology. Hydrogels were formed from tyramine-substituted hyaluronan through a peroxidase-dependent cross-linking (step 2) reaction at hyaluronan concentrations of 2.5 mg/ml and above. Uncross-linked tyramine-substituted hyaluronan was characterized after hyaluronidase SD digestion. Cross-linked hydrogels showed increased resistance to digestion by testicular hyaluronidase and hyaluronidase SD with increasing hyaluronan concentration. Cells directly encapsulated within the hydrogels during hydrogel cross-linking remained metabolically active during 7 days of culture similar to cells cultured in monolayer.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
C. Vinatier, J. Guicheux, G. Daculsi, P. Layrolle, P. Weiss, Biomed. Mater. Eng.16, S107 (2006)
J.K. Suh, H.W. Matthew, Biomaterials 21, 2589 (2000). doi:10.1016/S0142-9612(00)00126-5
P. Angele, R. Kujat, M. Nerlich, J. Yoo, V. Goldberg, B. Johnstone, Tissue Eng.5, 545 (1999). doi:10.1089/ten.1999.5.545
T.C. Laurent, U.B. Laurent, J.R. Fraser, Immunol. Cell Biol.74, A1 (1996). doi:10.1038/icb.1996.32
V. Gupta, J.A. Werdenberg, T.L. Blevins, K.J. Grande-Allen, Tissue Eng.13, 41 (2007). doi:10.1089/ten.2006.0091
W.S. Turner, E. Schmelzer, R. McClelland, E. Wauthier, W. Chen, L.M. Reid, J. Biomed. Mater. Res. B: Appl. Biomater.82, 156 (2007). doi:10.1002/jbm.b.30717
X. Jia, Y. Yeo, R.J. Clifton, T. Jiao, D.S. Kohane, J.B. Kobler et al., Biomacromolecules7, 3336 (2006). doi:10.1021/bm0604956
Y. Luo, K.R. Kirker, G.D. Prestwich, Modification of natural polymers: hyaluronic acid, ed. by A. Atala, R. Lanza, inMethods of Tissue Engineering (Academic Press, San Diego, 2001), pp. 539–553
N.E. Larsen, C.T. Pollak, K. Reiner, E. Leshchiner, E.A. Balazs, J. Biomed. Mater. Res.27, 1129 (1993). doi:10.1002/jbm.820270903
L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo et al., Biomaterials14, 1154 (1993). doi:10.1016/0142-9612(93)90160-4
J.J. Young, K.M. Cheng, T.L. Tsou, H.W. Liu, H.J. Wang, J. Biomater. Sci. Polym. Ed.15, 767 (2004). doi:10.1163/156856204774196153
D.L. Nettles, T.P. Vail, M.T. Morgan, M.W. Grinstaff, L.A. Setton, Ann. Biomed. Eng.32, 391 (2004). doi:10.1023/B:ABME.0000017552.65260.94
X.Z. Shu, Y. Liu, Y. Luo, M.C. Roberts, G.D. Prestwich, Biomacromolecules3, 1304 (2002). doi:10.1021/bm025603c
J.L. Vanderhooft, B.K. Mann, G.D. Prestwich, Biomacromolecules8, 2883 (2007). doi:10.1021/bm0703564
J. Luo, C. Pardin, X.X. Zhu, W.D. Lubell, J. Comb. Chem.9, 582 (2007). doi:10.1021/cc060132+
R.N. Chen, H.O. Ho, M.T. Sheu, Biomaterials26, 4229 (2005). doi:10.1016/j.biomaterials.2004.11.012
E.P. Broderick, D.M. O’Halloran, Y.A. Rochev, M. Griffin, R.J. Collighan, A.S. Pandit, J. Biomed. Mater. Res. B: Appl. Biomater.72, 37 (2005). doi:10.1002/jbm.b.30119
M.E. Jones, P.B. Messersmith, Biomaterials28, 5215 (2007). doi:10.1016/j.biomaterials.2007.08.026
T.J. Sanborn, P.B. Messersmith, A.E. Barron, Biomaterials23, 2703 (2002). doi:10.1016/S0142-9612(02)00002-9
S. Sakai, K. Kawakami, Acta Biomater.3, 495 (2007). doi:10.1016/j.actbio.2006.12.002
R. Jin, C. Hiemstra, Z. Zhong, J. Feijen, Biomaterials28, 2791 (2007). doi:10.1016/j.biomaterials.2007.02.032
Y. Ogushi, S. Sakai, K. Kawakami, J. Biosci. Bioeng.104, 30 (2007). doi:10.1263/jbb.104.30
S.J. Sophia, A. Singh, D.L. Kaplan, J. Macromol. Sci, Part A39, 1151 (2002)
B. Kalra, A. Kumar, R.A. Gross, Polym. Reprints41, 1805 (2000)
J. Chan, A. Darr, D. Alam, A. Calabro, Am. J. Cosmet. Surg.22, 105 (2005)
K. Kamohara, M. Banbury, A. Calabro, Z.B. Popovic, A. Darr, Y. Ootaki et al., Heart Surg. Forum9, 888 (2006). doi:10.1532/HSF98.20061075
M. Kurisawa, J.E. Chung, Y.Y. Yang, S.J. Gao, H. Uyama, Chem. Commun. (Camb.), 4312 (2005). doi:10.1039/b506989 k
N. Blumenkrantz, G. Asboe-Hansen, Anal. Biochem.54, 484 (1973). doi:10.1016/0003-2697(73)90377-1
A. Calabro, M. Benavides, M. Tammi, V.C. Hascall, R.J. Midura, Glycobiology10, 273 (2000). doi:10.1093/glycob/10.3.273
A. Calabro, V.C. Hascall, R.J. Midura, Glycobiology10, 283 (2000). doi:10.1093/glycob/10.3.283
A. Calabro, R. Midura, A. Wang, L. West, A. Plaas, V.C. Hascall, Osteoarthr. Cartilage 9(Suppl A), S16 (2001)
A. Calabro, V.C. Hascall, B. Caterson, Arch. Biochem. Biophys.298, 349 (1992). doi:10.1016/0003-9861(92)90421-R
W. Selbi, C. de la Motte, V. Hascall, A. Phillips, J. Am. Soc. Nephrol.15, 1199 (2004). doi:10.1097/01.ASN.0000125619.27422.8E
A. Wang, V.C. Hascall, J. Biol. Chem.279, 10279 (2004). doi:10.1074/jbc.M312045200
M. Aslam, A. Dent,Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences (Macmillan Reference Ltd., London, 1998)
D. Sehgal, I.K. Vijay, Anal. Biochem.218, 87 (1994). doi:10.1006/abio.1994.1144
Q.P. Lei, D.H. Lamb, A.G. Shannon, X. Cai, R.K. Heller, M. Huang et al., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.813, 103 (2004). doi:10.1016/j.jchromb.2004.09.015
T. Matsumoto, E.E. Nieuwenhuis, R.L. Cisneros, B. Ruiz-Perez, K. Yamaguchi, R.S. Blumberg et al., J. Med. Microbiol.53, 97 (2004). doi:10.1099/jmm.0.05386-0
B. Ruiz-Perez, R.L. Cisneros, T. Matsumoto, R.J. Miller, G. Vasios, P. Calias et al., J. Infect. Dis.188, 378 (2003). doi:10.1086/376556
S.M. Holmbeck, P.A. Petillo, L.E. Lerner, Biochemistry33, 14246 (1994). doi:10.1021/bi00251a037
A.J. Gross, I.W. Sizer, J. Biol. Chem.234, 1611 (1959)
K.G. Welinder, Biochim. Biophys. Acta1080, 215 (1991)
M.D. Berry, J. Neurochem.90, 257 (2004). doi:10.1111/j.1471-4159.2004.02501.x
S.O. Andersen, Insect Biochem. Mol. Biol.34, 459 (2004). doi:10.1016/j.ibmb.2004.02.006
T.G. Huggins, M.W. Staton, D.G. Dyer, N.J. Detorie, M.D. Walla, J.W. Baynes et al., Ann. NY Acad. Sci.663, 436 (1992). doi:10.1111/j.1749-6632.1992.tb38692.x
U. auf dem Keller, A. Kumin, S. Braun, S. Werner, J. Invest. Dermatol. Symp. Proc. 11, 106 (2006). doi:10.1038/sj.jidsymp.5650001
K.J. Davies, Biochem. Soc. Symp.61, 1 (1995)
L.L. Faltz, C.B. Caputo, J.H. Kimura, J. Schrode, V.C. Hascall, J. Biol. Chem.254, 1381 (1979)
Acknowledgements
The authors would like to thank the Mizutani Foundation for Glycoscience and the Cleveland Clinic for their generous financial support. The authors would also like to acknowledge Christine Harris, Christine Roche, and Melanie Moore for their technical assistance, and Dr. Thomas Gerkin for his contribution to the NMR data.
Author information
Authors and Affiliations
Department of Biomedical Engineering, Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
Aniq Darr & Anthony Calabro
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
Aniq Darr
- Aniq Darr
Search author on:PubMed Google Scholar
- Anthony Calabro
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toAnthony Calabro.
Rights and permissions
About this article
Cite this article
Darr, A., Calabro, A. Synthesis and characterization of tyramine-based hyaluronan hydrogels.J Mater Sci: Mater Med20, 33–44 (2009). https://doi.org/10.1007/s10856-008-3540-0
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
