Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The value of the cosmological constant

  • Essay Awarded by the Gravity Research Foundation
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today,tU, be\({\Lambda \sim t_{U}^{-2} \sim 10^{-122}}\) , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is\({\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055}\) , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Lemaître G.: Proc. Nat. Acad. Sci.20, 12 (1934)

    Article ADS  Google Scholar 

  2. Zeldovich Y.B.: JETP Lett.6, 316 (1967)

    ADS  Google Scholar 

  3. Weinberg S.: Rev. Mod. Phys.61, 1 (1989)

    Article MathSciNet ADS MATH  Google Scholar 

  4. Bousso R.: Gen. Relativ. Gravit.40, 607 (2008)

    Article MathSciNet ADS MATH  Google Scholar 

  5. Riess A.G., et al.: Supernova search team collaboration. Astron. J.116, 1009 (1998)

    Article ADS  Google Scholar 

  6. Perlmutter S., et al.: Supernova cosmology project collaboration. Astrophys. J.517, 565 (1999)

    Article ADS  Google Scholar 

  7. Barrow J.D., Tipler F.J.: The Anthropic Cosmological Principle, chap. 6.9. Oxford UP, Oxford (1986)

    Google Scholar 

  8. Weinberg S.: Phys. Rev. Lett59, 2607 (1987)

    Article ADS  Google Scholar 

  9. Efstathiou G.: Mon. Not. R. astron. Soc.274, L73 (1995)

    ADS  Google Scholar 

  10. Garriga J., Vilenkin A.: Phys. Rev. D77, 043526 (2008)

    Article ADS  Google Scholar 

  11. Bousso R., Freivogel B., Leichenauer S., Rosenhaus V.: Phys. Rev.D83, 023525 (2011)

    Article ADS  Google Scholar 

  12. Shaw D.J., Barrow J.D.: Phys. Rev. D83, 04351 (2010)

    Google Scholar 

  13. Komatsu, E. et al.: arXiv:1001.4538

Download references

Author information

Authors and Affiliations

  1. DAMTP, Centre for Mathematical Sciences, Cambridge University, Cambridge, CB3 0WA, UK

    John D. Barrow & Douglas J. Shaw

Authors
  1. John D. Barrow
  2. Douglas J. Shaw

Corresponding author

Correspondence toJohn D. Barrow.

Additional information

Third Award in the 2011 Essay Competition of the Gravity Research Foundation.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp