Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Sediment processes and flow reversal in the undular tidal bore of the Garonne River (France)

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity:\(\hbox {Fr}_{1} = 1.02\) and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material (\(\hbox {d}_{50} \approx 13~\upmu \hbox {m}\)) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 min after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bazin H (1865) Recherches expérimentales sur la propagation des Ondes. Mémoires présentés par divers savants à l’Académie des Sciences, vol 19, Paris, France, pp 495–644 (in French)

  2. Brown R, Chanson H (2012) Suspended sediment properties and suspended sediment flux estimates in an urban environment during a major flood event. Water Resour Res 18:W11523. doi:10.1029/2012WR012381

    Google Scholar 

  3. Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd edn. Butterworth-Heinemann, Oxford ISBN 978 0 7506 5978 9

    Google Scholar 

  4. Chanson H (2010) Unsteady turbulence in tidal bores: effects of bed roughness. J Waterw Port Coast Ocean Eng 136(5):247–256. doi:10.1061/(ASCE)WW.1943-5460.0000048

    Article  Google Scholar 

  5. Chanson H (2011a) Tidal bores, Aegir, Eagre, Mascaret, Pororoca: theory and observations. World Scientific, Singapore ISBN 9789814335416

    Book  Google Scholar 

  6. Chanson H (2011b) Current knowledge in tidal bores and their environmental, ecological and cultural impacts. Environ Fluid Mech 11(1):77–98. doi:10.1007/s10652-009-9160-5

    Article  Google Scholar 

  7. Chanson H (2012) Momentum considerations in hydraulic jumps and bores. J Irrigation Drainage Eng 138(4):382–385. doi:10.1061/(ASCE)IR.1943-4774.0000409

    Article  Google Scholar 

  8. Chanson H, Trevethan M (2011) Vertical mixing in the fully developed turbulent layer of sediment-laden open-channel flow. Discussion. J Hydraul Eng 137(9):1095–1097. doi:10.1061/(ASCE)HY.1943-7900.0000218

    Article  Google Scholar 

  9. Chanson H, Jarny S, Coussot P (2006) Dam break wave of thixotropic fluid. J Hydraul Eng 132(3):280–293. doi:10.1061/(ASCE)0733-9429(2006)132:3(280)

    Google Scholar 

  10. Chanson H, Takeuchi M, Trevethan M (2007) High-frequency suspended sediment flux measurements in a small estuary. In: Sommerfield M (ed) Proceedings of 6th international conference on multiphase flow ICMF 2007, Leipzig, Germany, July 9–13, Session 7, Paper no. S7\_Mon\_C\_S7\_Mon\_C\_5, (CD-ROM), ISBN 978-3-86010-913-7

  11. Chanson H, Reungoat D, Simon B, Lubin P (2011) High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore. Estuar Coast Shelf Sci 95(2–3):298–306. doi:10.1016/j.ecss.2011.09.012

    Article  Google Scholar 

  12. Chen S (2003) Tidal bore in the North branch of the Changjiang Estuary. In: International Research & Training Center on Erosion & Sedimentation (ed) Proceedings of internatioanl conference on estuaries & coasts ICEC-2003, vol 1, Hangzhou, China, November 8–11. pp 233–239

  13. Chen J, Lui C, Zhang C, Walker HJ (1990) Geomorphological development and sedimentation in Qiantang Estuary and Hangzhou Bay. J Coastal Res 6(3):559–572

    Google Scholar 

  14. Coussot P (1997) Mudflow rheology and dynamics. IAHR Monograph, Balkema

    Google Scholar 

  15. Coussot P (2005) Rheometry of pastes, suspensions, and granular materials. Applications in industry and environment. Wiley, New York

    Book  Google Scholar 

  16. Docherty NJ, Chanson H (2012) Physical modelling of unsteady turbulence in breaking tidal bores. J Hydraul Eng 138(5):412–419. doi:10.1061/(ASCE)HY.1943-7900.0000542

    Article  Google Scholar 

  17. Donnelly C, Chanson H (2005) Environmental impact of undular tidal bores in Tropical Rivers. Environ Fluid Mech 5(5):481–494. doi:10.1007/s10652-005-0711-0

    Article  Google Scholar 

  18. Furuyama S, Chanson H (2010) A numerical solution of a tidal bore flow. Coast Eng J 52(3):215–234. doi:10.1142/S057856341000218X

    Article  Google Scholar 

  19. Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New York

    Google Scholar 

  20. Greb SF, Archer AW (2007) Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology 35(5):435–438

    Article  Google Scholar 

  21. Guerrero M, Szupiany RN, Amsler M (2011) Comparison of acoustic backscattering techniques for suspended sediments investigation. Flow Meas Instr 22:392–401

    Article  Google Scholar 

  22. Ha HK, Hsu WY, Maa JPY, Shao YY, Holland CW (2009) Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Cont Shelf Res 29:1310–1316

    Article  Google Scholar 

  23. Hobson PM (2008) Rheologic and flume erosion characteristics of Georgia sediments from Bridge Foundations. MSc. thesis, Georgia Institute of Technology, School of Civil and, Environmental Engineering

  24. Hornung HG, Willert C, Turner S (1995) The flow field downstream of a hydraulic jump. J Fluid Mech 287:299–316

    Article  Google Scholar 

  25. Julien PY (1995) Erosion and sedimentation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Khezri N, Chanson H (2012) Inception of bed load motion beneath a bore. Geomorphology 153–154:39–47. doi:10.1016/j.geomorph.2012.02.006

    Article  Google Scholar 

  27. Kjerfve B, Ferreira HO (1993) Tidal bores: first ever measurements. Ciência e Cultura (J Braz Assoc Adv Sci) 45(2):135–138

    Google Scholar 

  28. Koch C, Chanson H (2009) Turbulence measurements in positive surges and bores. J Hydraul Res 47(1):29–40. doi:10.3826/jhr.2009.2954

    Article  Google Scholar 

  29. Lewis AW (1972) Field studies of a tidal bore in the River Dee. M.Sc. thesis, Marine Science Laboratories, University College of NorthWales, Bangor, UK

  30. Liggett JA (1994) Fluid mechanics. McGraw-Hill, New York, USA

  31. LighthillI J (1978) Waves in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  32. Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Commun 37(1):119–121. doi:10.1016/j.mechrescom.2009.09.008

    Article  Google Scholar 

  33. McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydrol Process 14:351–366

    Article  Google Scholar 

  34. Mouaze D, Chanson H, Simon B (2010) Field measurements in the tidal bore of the Sélune River in the Bay of Mont Saint Michel (September 2010). Hydraulic model report no. CH81/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia. ISBN 9781742720210

  35. Moule AC (1923) The bore on the Ch’ien-T’ang River in China. T’oung Pao, Archives pour servir à l’étude de l’histoire, des langues, la geographie et l’ethnographie de l’Asie orientale (Chine, Japon, Corée, Indo-Chine, Asie Centrale et Malaisie), vol 22, pp 10–188

  36. Otsubo K, Muraoko K (1988) Critical shear stress of cohesive bottom sediments. J Hydraul Eng 114(10):1241–1256

    Article  Google Scholar 

  37. Reungoat D, Chanson H, Caplain B (2012) Field measurements in the tidal bore of the Garonne River at Arcins (June 2012). Hydraulic model report no. CH89/12, School of Civil Engineering, The University of Queensland, Brisbane, Australia. ISBN 9781742720616

  38. Roussel N, le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117(2–3):85–95

    Article  Google Scholar 

  39. Rowbotham F (1983) The Severn bore, 3rd edn. David & Charles, Newton Abbot

    Google Scholar 

  40. Simpson JH, Fisher NR, Wiles P (2004) Reynolds stress and TKE production in an estuary with a tidal bore. Estuar Coast Shelf Sci 60(4):619–627

    Article  Google Scholar 

  41. Tessier B, Terwindt JHJ (1994) An example of soft-sediment deformations in an intertidal environment—the effect of a tidal bore. Comptes-Rendus de l’Académie des Sciences, Série II, 319(2):217–233 (in French)

    Google Scholar 

  42. Toorman EA (2008) Vertical mixing in the fully developed turbulent layer of sediment-laden open-channel flow. J Hydraul Eng 134(9):1225–1235. doi:10.1061/(ASCE)0733-9429

    Google Scholar 

  43. Tricker RAR (1965) Bores, breakers, waves and wakes. American Elsevier Publ. Co., New York

    Google Scholar 

  44. Wan Z, Wang Z (1994) Hyperconcentrated flow. IAHR monograph. Balkema, Rotterdam

    Google Scholar 

  45. Wolanski E, Williams D, Spagnol S, Chanson H (2004) Undular tidal bore dynamics in the Daly estuary, Northern Australia. Estuar Coast Shelf Sci 60(4):629–636

    Article  Google Scholar 

  46. Zhang JL, Liu DX (2011) Application of OBS-3A nephelometer in observation of tidal bore in Qiantang River. Ocean Technol 30(2):67–79 (in Chinese)

    Google Scholar 

  47. Zhou XJ, Gao S (2004) Spatial variability and representation of seabed sediment grain sizes: an example from the Zhoushan-Jinshanwei transect, Hangzhou Bay, China. Chin Sci Bull 49(23):2503–2507

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all the people who participated to the field works, without whom the study could not have been conducted. The authors acknowledge the assistance of Patrice Benghiati and the permission to access and use the pontoon in theBras d’Arcins. The ADV was provided kindly by Prof Laurent David (University of Poitiers, France). The financial assistance of the Agence Nationale de la Recherche (Projet MASCARET 10-BLAN-0911-01) is acknowledged, as well as the generous support of the project leader Dr Pierre Lubin (University of Bordeaux, France).

Author information

Authors and Affiliations

  1. Université de Bordeaux, CNRS UMR 5295, I2M, 16 avenue Pey-Berland, Pessac, France

    David Reungoat & Bastien Caplain

  2. School of Civil Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia

    Hubert Chanson

Authors
  1. David Reungoat

    You can also search for this author inPubMed Google Scholar

  2. Hubert Chanson

    You can also search for this author inPubMed Google Scholar

  3. Bastien Caplain

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHubert Chanson.

Rights and permissions

About this article

Cite this article

Reungoat, D., Chanson, H. & Caplain, B. Sediment processes and flow reversal in the undular tidal bore of the Garonne River (France).Environ Fluid Mech14, 591–616 (2014). https://doi.org/10.1007/s10652-013-9319-y

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp