131Accesses
44Citations
3 Altmetric
Abstract
In this paper, we make a systematic study of the global dynamical structure of the Sun–JupiterL4 tadpole region. The results are based on long-time simulations of the Trojans in the Sun, Jupiter, Saturn system and on the frequency analysis of these orbits. We give some initial results in the description of the resonant structure that guides the long-term dynamics of this region. Moreover, we are able to connect this global view of the phase space with the observed Trojans and identify resonances in which some of the real bodies are located.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
C. Beaugé F. Roig (2001)ArticleTitle‘A semianalytical model for the motion of the trojan asteroids: proper elements and families’Icarus153 391–415OccurrenceHandle10.1006/icar.2001.6699
R. Bien J. Schubart (1984)ArticleTitle‘Trojan orbits in secular resonances’Celest. Mech. Dynam. Astron.34 425–434
Bowell, E.: 2001, ‘The asteroid orbital elements database’. For more information, visit the URL http://www.naic.edu/˜nolan/astorb.html.
A. Celletti A. Giorgilli (1991)ArticleTitle‘On the stability of the Lagrangian points in the spatial restricted three body problem’Celest. Mech. Dynam. Astron.50IssueID1 31–58OccurrenceHandle10.1007/BF00048985
R. Dvorak K. Tsiganis (2000)ArticleTitle‘Why do Trojan ASCs (not) escape?’Celest. Mech. Dynam. Astron.78 125–136OccurrenceHandle10.1023/A:1011120413687
S. Ferraz-Mello (1997)ArticleTitle‘A symplectic mapping approach to the study of the stochasticity in asteroidal resonances’Celest. Mech. Dynam. Astron.65 421–437OccurrenceHandle10.1007/BF00049505
Gabern, F.: 2003, ‘On the dynamics of the Trojan asteroids’. Ph.D. thesis, University of Barcelona. http://www.maia.ub.es/∼gabern/.
F. Gabern A. Jorba (2001)ArticleTitle‘A restricted four-body model for the dynamics near the Lagrangian points of the Sun–Jupiter system’Discrete Contin. Dyn. Syst. Series B1IssueID2 143–182
F. Gabern A. Jorba (2004)ArticleTitle‘Generalizing the restricted three-body problem. the bianular and tricircular coherent problems’Astron. Astrophys.420 751–762OccurrenceHandle10.1051/0004-6361:20035799
F. Gabern A. Jorba P. Robutel (2004)ArticleTitle‘On the accuracy of restricted three-body models for the trojan motion’Discrete Contin. Dyn. Syst.11IssueID4 843–854
A. Giorgilli A. Delshams E. Fontich L. Galgani C. Simó (1989)ArticleTitle‘Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem’J. Differential Equations77 167–198OccurrenceHandle10.1016/0022-0396(89)90161-7
A. Giorgilli C. Skokos (1997)ArticleTitle‘On the stability of the Trojan asteroids’Astron. Astrophys.317 254–261
À. Jorba J. Villanueva (1997)ArticleTitle‘On the persistence of lower dimensional invariant tori under quasi-periodic perturbations’J. Nonlinear Sci.7 427–473OccurrenceHandle10.1007/s003329900036
J. Laskar (1990)ArticleTitle‘The chaotic motion of the solar system A numerical estimate of the size of the chaotic zone’Icarus88 266–291OccurrenceHandle10.1016/0019-1035(90)90084-M
J. Laskar (1999) ‘Introduction to frequency map analysis’ C. Simó (Eds) Hamiltonian Systems with Three or More Degrees of Freedom NATO ASI. Kluwer Academic Publishers Dordrecht 134–150
J. Laskar P. Robutel (2001)ArticleTitle‘High order symplectic integrators for perturbed Hamiltonian systems’Celest. Mech. Dynam. Astron.80 39–62OccurrenceHandle10.1023/A:1012098603882
H. Levison E. Shoemaker C. Shoemaker (1997)ArticleTitle‘The long-term dynamical stability of Jupiter’s Trojan asteroids’Nature385 42–44OccurrenceHandle10.1038/385042a0
F. Marzari H. Scholl (2002)ArticleTitle‘On the instability of Jupiter’s Trojans’Icarus159 328–338OccurrenceHandle10.1006/icar.2002.6904
T. Michtchenko C. Beaugé F. Roig (2001)ArticleTitle‘Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids’Astron. J.122 3485–3491OccurrenceHandle10.1086/324464
A. Milani (1993)ArticleTitle‘The Trojan asteroid belt: proper elements, stability, chaos and families’Celest. Mech. Dynam. Astron.57 59–94
Milani, A.: 1994, ‘The dynamics of the Trojan asteroids’. In:IAU Symp. 160, Asteroids, Comets, Meteors 1993, Vol. 160, pp. 159–174.
A. Milani A. M. Nobili (1992)ArticleTitle‘An example of stable chaos in the Solar System’Nature357 569–571
A. Milani A. M. Nobili Z. Knezevic (1997)ArticleTitle‘Stable chaos in the asteroid belt’Icarus125 13–31OccurrenceHandle10.1006/icar.1996.5582
D. Nesvorny L. Dones (2002)ArticleTitle‘How long-live are the hypothetical Trojan populations of Saturn, Uranus, and Neptune?’Icarus160 271–288OccurrenceHandle10.1006/icar.2002.6961
D. Nesvorny F. Thomas S. Ferraz-Mello A. Morbidelli (2002)ArticleTitle‘A perturbative treatment of the co-orbital motion’Celest. Mech. Dynam. Astron.82 323–361OccurrenceHandle10.1023/A:1015219113959
P. Robutel J. Laskar (2000) ‘Global dynamics in the solar system’ H. Pretka-Ziomek E. Wnuk P. K. Seidelmann D. Richardson (Eds) Dynamics of Natural and Artificial Celestial Bodies Kluwer Academic Publishers Dordrecht 253–258
P. Robutel J. Laskar (2001)ArticleTitle‘Frequency map and global dynamics in the solar system I’Icarus152 4–28OccurrenceHandle10.1006/icar.2000.6576
C. Skokos A. Dokoumetzidis (2000)ArticleTitle‘Effective stability of the Trojan asteroids’Astron. Astrophys.367 729–736OccurrenceHandle10.1051/0004-6361:20000456
K. Tsiganis H. Varvoglis R. Dvorak (2005)ArticleTitle‘Chaotic diffusion and effective stability of Jupiter Trojans’Celest. Mech. Dynam. Astron.92 73
C. Yoder (1979)ArticleTitle‘Notes on the origin of the Trojan asteroids’Icarus40 341–344OccurrenceHandle10.1016/0019-1035(79)90024-1
Author information
Authors and Affiliations
Astronomie et Systèmes Dynamiques, IMCCE, CNRS UMR 8028, 77 Av. Denfert-Rochereau, 75014, Paris, France
P. Robutel
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007, Barcelona, Spain
F. Gabern & A. Jorba
- P. Robutel
Search author on:PubMed Google Scholar
- F. Gabern
Search author on:PubMed Google Scholar
- A. Jorba
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toP. Robutel.
Rights and permissions
About this article
Cite this article
Robutel, P., Gabern, F. & Jorba, A. The Observed Trojans and the Global Dynamics Around The Lagrangian Points of the Sun–Jupiter System.Celestial Mech Dyn Astr92, 53–69 (2005). https://doi.org/10.1007/s10569-004-5976-y
Received:
Revised:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


