3674Accesses
3Altmetric
Abstract
During the last 15 years, miniaturized paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion toward a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications—actuators, valves, and pumps—the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.















Similar content being viewed by others
References
Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726
Al-Faqheri W, Ibrahim F, Thio THG, Moebius J, Joseph K, Arof H, Madou M (2013) Vacuum/compression valving (VCV) using paraffin wax on a centrifugal microfluidic CD platform. PLoS ONE 8(3):e58523
Baek SK, Yoon YK, Jeon HS, Seo S, Park JH (2013) A wireless sequentially actuated microvalve system. J Micromech Microeng 23:045006
Bodén R (2008) Microactuators for powerful pumps. Dissertation, Uppsala University urn:nbn:se:uu:diva-9402
Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2005) A polymeric paraffin micropump with active valves for high-pressure microfluidics. In: Proceedings of Transducers’05, pp 201–204
Bodén R, Lehto M, Schweitz J-Å (2006a) A paraffin driven linear microactuator for high force and large displacement applications. In: Proceedings of actuator, 10th international conference on new actuators, pp 720–723
Bodén R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-Å (2006b) A polymeric paraffin actuated high pressure micropump. Sens Actuators A Phys 127(1):88–93
Bodén R, Hjort K, Schweitz J-Å, Simu U (2008a) A metallic micropump for high-pressure microfluidics. J Micromech Microeng 18(11):115009
Bodén R, Lehto M, Margell J, Hjort K, Schweitz J-Å (2008b) On-chip liquid storage and dispensing for lab-on-a-chip applications. J Micromech Microeng 18(7):075036
Bodén R, Ogden S, Hjort K (2013) Microdispenser with continuous flow and selectable target volume for microfluidic high-pressure applications. J Microelectromech Syst. doi:10.1109/JMEMS.2013.2279976
Boustheen A, Homburg FGA, Somhorst MGAM, Dietzel A (2011) A layered polymeric μ-valve suitable for lab-on-foil: design, fabrication, and characterization. Microfluid Nanofluid 11(6):663–673
Boustheen A, Homburg FGA, Dietzel A (2012) A modular microvalve suitable for lab on a foil: manufacturing and assembly concepts. Microelectron Eng 98:638–641
Carlén ET, Mastrangelo CH (1999) Simple, high actuation power, thermally activated paraffin actuator. In: Proceedings of Transducers’99 conference, pp 1364–1367
Carlén ET, Mastrangelo CH (2002a) Electrothermally activated paraffin microactuators. J Microelectromech Syst 11(3):165–174
Carlén ET, Mastrangelo CH (2002b) Surface micromachined paraffin actuated microvalve. J Microelectromech Syst 11(5):408–420
Charlesby A (1954) The crosslinking and degradation of paraffin chains by high-energy radiation. Proc R Soc Lond A 222(1148):60–74
Choi J-Y, Ruan J, Coccetti F, Lucyszyn S (2009) Three-dimensional RF MEMS switch for power applications. IEEE Trans Ind Electron 56(4):1031–1039
De Volder M, Reynaerts D (2010) Pneumatic and hydraulic microactuators: a review. J Micromech Microeng 20(4):043001
Dubois P, Vela E, Koster S, Briand D, Shea HR, de Rooij N-F (2006) Paraffin-PDMS composite thermo microactuator with large vertical displacement capability. In: Proceedings of actuator, 10th international conference on new actuators, pp 215–218
Feng G-H, Chou Y-C (2011) Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design. Microelectron Eng 88(2):187–194
Freund M, Csikos R, Keszthelyi S, Mozes GY (1982) Paraffin products properties, technologies, applications. Elsevier Scientific Publishing Company, Amsterdam. ISBN:0-444-99712-1
Gilbertson RG, Busch JD (1996) A survey of micro-actuator technologies for future spacecraft missions. J Br Interplanet Soc 49:129–138
Goldschmidtboing F, Katus P, Geipel A and Woias P (2008) A novel self-heating paraffin membrane micro-actuator. In: Proceedings of MEMS, pp 531–534
Gowreesunker BL, Tassou SA, Kolokotroni M (2012) Improved simulation of phase change processes in applications where conduction is the dominant heat transfer mode. Energy Build 47:353–359
Grönland T-A, Rangsten P, Nese M, Lang M (2007) Miniaturization of components and systems for space using MEMS-technology. Acta Astronaut 61(1–6):228–233
Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174
Jaw KS, Hsu CK, Lee JS (2001) The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral. Thermochim Acta 367–368:165–168
Jonsson J, Ogden S, Johansson L, Hjort K, Thornell G (2012) Acoustically enriching, large-depth aquatic sampler. Lab Chip 12(9):1619–1628
Kabei N, Kosuda M, Kagamibuchi H, Tashiro R, Mizuno H, Ueda Y, Tsuchiya K (1997) A thermal-expansion-type microactuator with paraffin as the expansive material. JSME Int J C 40(4):736–742
Klintberg L, Thornell G (2002) A thermal microactuator made by partial impregnation of polyimide with paraffin. J Micromech Microeng 12(6):849–854
Klintberg L, Karlsson M, Stenmark L, Schweitz J-Å, Thornell G (2002) A large stroke, high force paraffin phase transition actuator. Sens Actuators A Phys 96(2–3):189–195
Klintberg L, Karlsson M, Stenmark L, Thornell G (2003a) A thermally activated paraffin-based actuator for gas-flow control in a satellite electrical propulsion system. Sens Actuators A Phys 105(3):237–246
Klintberg L, Svedberg M, Nikolajeff F, Thornell G (2003b) Fabrication of a paraffin actuator using hot embossing of polycarbonate. Sens Actuators A Phys 103(3):307–316
Kobayashi T, Matsuoka S, Ueno A, Maeda R (2004) An easy fabrication technique for micro paraffin actuator and application to microvalve. In: Electrochemical Society proceedings, vol 2004-09, pp 330–335
Kong Q, Ma J, Che C (2009) Theoretical and experimental study of volumetric change rate during phase change process. Int J Energy Res 33(5):513–525
Kratz H, Eriksson A, Karlsson M, Köhler J, Thornell G (2007) Analysis of thermal transients in an asymmetric silicon-based heat dissipation stage. IEEE Trans Compon Packag Technol 30(3):444–456
Krulevitch P, Lee AP, Ramsey PB, Trevino JC, Hamilton J, Northrup MA (1996) Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4):270–282
Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64
Lee JS, Lucyszyn S (2005) A micromachined refreshable Braille cell. J Microelectromech Syst 14(4):673–682
Lee JS, Lucyszyn S (2007a) Design and pressure analysis for bulk micromachined electrothermal hydraulic microactuators using a PCM. Sens Actuators A Phys 133(2):294–300
Lee JS, Lucyszyn S (2007b) Thermal analysis for bulk-micromachined electrothermal hydraulic microactuators using a phase change material. Sens Actuators A Phys 135(2):731–739
Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554
Lehto M, Bodén R (2008) A multi-stable miniature paraffin actuator. In: Proceedings of actuator, 11th international conference on new actuators, pp 864–867
Lehto M, Boden R, Simu U, Hjort K and Schweitz J-Å (2004) Printed circuit board paraffin actuators for disposable microfluidic systems. In: Proceedings of actuator, 9th international conference on new actuators, pp 220–223
Lehto M, Schweitz J-Å, Thornell G (2007) Binary mixtures of n-alkanes for tunable thermohydraulic actuators. J Microelectromech Syst 16(3):728–733
Lehto M, Bodén R, Simu U, Hjort K, Thornell G, Schweitz J-Å (2008) A polymeric paraffin microactuator. J Microelectromech Syst 17(5):1172–1177
Liu RH, Bonanno J, Yang J, Lenigk R, Grodzinski P (2004a) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336
Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004b) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831
Malik A, Ogden S, Amberg G, Hjort K (2013) Modeling and analysis of a phase change material thermohydraulic actuator. J Microelectromech Syst 22(1):186–194
McCarthy DK (1968) Nonmagnetic, lightweight oscillating actuator. In: Proceedings of the 3rd aerospace mechanisms symposium, pp 163–170
Mehling H, Cabeza LF (2008) Heat and cold storage with PCM an up to date introduction into basics and applications. Springer, Berlin. ISBN:978-3-540-68556-2
Nguyen NT, Wereley S (2006) Fundamentals, applications of microfluidics, 2nd edn. Artech House, Boston
Ogden S, Bodén R, Hjort K (2010) A latchable valve for high-pressure microfluidics. J Microelectromech Syst 19(2):396–401
Ogden S, Jonsson J, Thornell G, Hjort K (2012) A latchable high-pressure thermohydraulic valve actuator. Sens Actuators A Phys 188:292–297
Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39
Oh KW, Namkoong K, Park C (2005) A phase change microvalve using a meltable magnetic material: ferro-wax. In: Proceedings of μTAS 2005 conference, pp 554–556
Pal R, Yang M, Johnson BN, Burke DT, Burns MA (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748
Park J-M, Cho Y-K, Lee B-S, Lee J-G, Ko C (2007) Multifunctional microvalves control by optical illumination and its application in centrifugal microfluidic devices. Lab Chip 7(5):557–564
Royer GG (1932) Improvements in or relating to thermostats, GB 374,046
Sant HJ, Ho T, Gale BK (2010) An in situ heater for a phase-change-material-based actuation system. J Micromech Microeng 20(8):085039
Selvaganapathy P, Carlén ET, Mastrangelo CH (2003) Electrothermally actuated inline microfludic valves. Sens Actuators A Phys 104(3):275–282
Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review of thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345
Sharma G, Klintberg L, Hjort K (2011a) Viton-based fluoroelastomer microfluidics. J Micromech Microeng 21(2):025016
Sharma G, Svensson S, Ogden S, Klintberg L, Hjort K (2011b) High-pressure stainless steel active membrane microvalves. J Micromech Microeng 21(7):075010
Sherwood JF (1957) Device for utilizing the thermal expansion of wax. US 2(815):642
Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026
Srinivasan P, Spearing SM (2009) Material selection for optimal design of thermally actuated pneumatic and phase change microactuators. J Microelectromech Syst 18(2):239–249
Srivastava S, Handoo J, Agrawal KM, Joshi GC (1993) Phase-transition studies in n-alkanes and petroleum-related waxes—a review. J Phys Chem Solids 54(6):639–670
Stange WC (1977) The MJS-77 magnetometer actuator. In: Proceedings of the 11th aerospace mechanisms symposium, pp 77–86
Svedberg M, Nikolajeff F, Thornell G (2006) On the integration of flexible circuit boards with hot embossed thermoplastic structures for actuator purposes. Sens Actuators A Phys 125(2):534–547
Svensson S, Sharma G, Ogden S, Hjort K, Klintberg L (2010) High-pressure peristaltic membrane micropump with temperature control. J Microelectromech Syst 19(6):1462–1469
Tibbitts SF (1988) High output paraffin actuators: utilization in aerospace mechanisms. In: Proceedings of the 22nd aerospace mechanisms symposium, pp 13–28
Tibbitts SF (1991) High-output paraffin linear motors: utilization in adaptive systems. In: Proceedings of SPIE, vol 1543, pp 388–399
Vernet S (1938) Thermostat. US 2,115,501
Vernet S (1945) Sealing means. US 2,368,181
Vernet S, Kim J, Lee J (1941) Temperature responsive element. US 2,259,846
Wang J, Severtson S, Stein A (2006) Significant and concurrent enhancement of stiffness, strength and toughness for paraffin wax through organoclay addition. Adv Mater 18:1585–1588
Wang J, Stevertson S, Geil P (2007) Brittle-ductile transitions and the toughening mechanism in paraffin/organo-clay nanocomposites. Mater Sci Eng, A 467:172–180
Yang B, Lin Q (2007) A latchable microvalve using phase change of paraffin wax. Sens Actuators A Phys 134(1):194–200
Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867
Yoo JC, Choi YJ, Kang CJ, Kim Y-S (2007) A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and paraffin-actuated microvalve. Sens Actuators A Phys 139(1–2):216–220
Yousef H, Lehto M, Jäderblom T, Enculescu I and Hjort K (2005) A device integrating paraffin microactuator, fluidic compartment and microneedle array for fluid injection or sampling. In: Proceedings of μTAS, pp 157–159
Zoller P, Walsh DJ (1995) Standard pressure–volume–temperature data for polymers. Technomic, Lancaster, CA
Author information
Authors and Affiliations
Micro Systems Technology, Uppsala University, Box 534, 751 21, Uppsala, Sweden
Sam Ogden, Lena Klintberg, Greger Thornell, Klas Hjort & Roger Bodén
- Sam Ogden
You can also search for this author inPubMed Google Scholar
- Lena Klintberg
You can also search for this author inPubMed Google Scholar
- Greger Thornell
You can also search for this author inPubMed Google Scholar
- Klas Hjort
You can also search for this author inPubMed Google Scholar
- Roger Bodén
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toSam Ogden.
Rights and permissions
About this article
Cite this article
Ogden, S., Klintberg, L., Thornell, G.et al. Review on miniaturized paraffin phase change actuators, valves, and pumps.Microfluid Nanofluid17, 53–71 (2014). https://doi.org/10.1007/s10404-013-1289-3
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative