Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Biosynthesis of lignans and norlignans

  • Review Article
  • Published:
Journal of Wood Science Submit manuscript

Abstract

Lignans and norlignans constitute abundant classes of phenylpropanoids. Biosynthesis of these compounds has received widespread interest, mainly because they have various clinically important biological activities. In addition, lignans and norlignans are often biosynthesized and deposited in significant amounts in the heartwood region of trees as a metabolic event of heartwood formation, probably preventing heart rot by heart-rot fungi. Furthermore, biosynthetic reactions of lignans and norlignans involve unique stereochemical properties that are of great interest in terms of bioorganic chemistry and are expected to provide a model for biomimetic chemistry and its application. We outline the recent advances in the study of lignan and norlignan biosynthesis.

Article PDF

Similar content being viewed by others

References

  1. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article CAS  Google Scholar 

  2. Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure Appl Chem 72:1493–1523

    Article CAS  Google Scholar 

  3. Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110

    CAS  Google Scholar 

  4. Suzuki S, Umezawa T, Shimada M (2001) Norlignan biosynthesis inAsparagus officinalis L.: the norlignan originates from two nonidentical phenylpropane units. J Chem Soc Perkin Trans 1:3252–3257

    Google Scholar 

  5. Umezawa T (2005) Biosynthesis of lignans, lignins, and norlignans. Kagaku to Seibutsu 43:461–467

    Article CAS  Google Scholar 

  6. Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T (2007) Metabolic analysis of the cinnamate/monolignol pathway inCarthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 5:802–815

    Article CAS PubMed  Google Scholar 

  7. Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4:143–146

    Article CAS  Google Scholar 

  8. Umezawa T, Okunishi T, Shimada M (1997) Stereochemical diversity in lignan biosynthesis. Wood Res 84:62–75

    CAS  Google Scholar 

  9. Akiyama T, Magara K, Matsumoto Y, Meshitsuka G, Ishizu A, Ludquist K (2000) Proof of the presence of racemic forms of arylglycerol-β-aryl ether structure in lignin: studies on the stereo structure of lignin by ozonation. J Wood Sci 46:414–415

    Article CAS  Google Scholar 

  10. Paré PW, Wang H-B, Davin LB, Lewis NG (1994) (+)-Pinoresinol synthase: a stereoselective oxidase catalysing 8,8′-lignan formation inForsythia intermedia. Tetrahedron Lett 35:4731–4734

    Article  Google Scholar 

  11. Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article CAS PubMed  Google Scholar 

  12. Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41:9455–9461

    Article CAS PubMed  Google Scholar 

  13. Halls SC, Davin LB, Kramer DM, Lewis NG (2004) Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein. Biochemistry 43:2587–2595

    Article CAS PubMed  Google Scholar 

  14. Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article CAS PubMed  Google Scholar 

  15. Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Kim MK, Jeon J-H, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214

    Article CAS PubMed  Google Scholar 

  17. Ralph S, Park J-Y, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article CAS PubMed  Google Scholar 

  18. Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphsrtis maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe Interact 12:410–418

    Article CAS  Google Scholar 

  19. Burlat V, Kuwan M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article CAS PubMed  Google Scholar 

  20. Takabe K, Fujita M, Harada H, Saiki H (1981) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 12:813–820

    Google Scholar 

  21. Terashima N, Fukushima K, Takabe K (1986) Heterogeneity in formation of lignin VIII. An autoradiographic study on the formation of guaiacyl and syringyl lignin inMagnolia kobus DC. Holzforschung 40:101–105

    CAS  Google Scholar 

  22. Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin XIV. Formation and structure of lignin in differentiating xylem ofGinkgo biloba. Holzforschung 45:87–94

    Article CAS  Google Scholar 

  23. Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotech 16:407–415

    Article CAS PubMed  Google Scholar 

  24. Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article CAS PubMed  Google Scholar 

  26. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Chirstensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article CAS  Google Scholar 

  27. Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman JL, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acidO-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136:4023–4036

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Umezawa T, Davin LB, Lewis NG (1990) Formation of the lignan, (−)-secoisolariciresinol, by cell free extracts ofForsythia intermedia. Biochem Biophys Res Commun 171:1008–1014

    Article CAS PubMed  Google Scholar 

  29. Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (−)-pinoresinol in cell-free extracts ofForsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry 31:3875–3881

    Article CAS PubMed  Google Scholar 

  30. Katayama T, Davin LB, Chu A, Lewis NG (1993) Novel benzylic ether reductions in lignan biogenesis inForsythia intermedia. Phytochemistry 33:581–591

    Article CAS  Google Scholar 

  31. Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M (1994) Enantioselective lignan synthesis by cell-free extracts ofForsythia koreana. Biosci Biotech Biochem 58:230–234

    Article CAS  Google Scholar 

  32. Umezawa T, Shimada M (1996) Formation of the lignan (+)-secoisolariciresinol by cell-free extracts ofArctium lappa. Biosci Biotech Biochem 60:736–737

    Article CAS  Google Scholar 

  33. Suzuki S, Umezawa T, Shimada M (1998) Stereochemical difference in secoisolariciresinol formation between cell-free extracts from petioles and from ripening seeds ofArctium lappa L. Biosci Biotech Biochem 62:1468–1470

    Article CAS  Google Scholar 

  34. Suzuki S, Umezawa T, Shimada M (2002) Stereochemical diversity in lignan biosynthesis ofArctium lappa L. Biosci Biotech Biochem 66:1262–1269

    Article CAS  Google Scholar 

  35. Katayama T, Masaoka T, Yamada H (1997) Biosynthesis and stereochemistry of lignans inZanthoxylum ailanthoides I. (+)-Lariciresinol formation by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi 43:580–588

    CAS  Google Scholar 

  36. Suzuki S, Sakakibara N, Umezawa T, Shimada M (2002) Survey and enzymatic formation of lignans ofAnthriscus sylvestris. J Wood Sci 48:536–541

    Article CAS  Google Scholar 

  37. Xia Z-Q, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis inLinum flavum andPodophyllum peltatum. Phytochemistry 55:537–549

    Article CAS PubMed  Google Scholar 

  38. von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol-lariciresinol reductases with different stereospecificity fromLinum album andLinum usitatissimum. Phytochemistry 66:1254–1263

    Article  Google Scholar 

  39. Okunishi T, Umezawa T, Shimada M (2001) Isolation and enzymatic formation of lignans ofDaphne genkwa andDaphne odora. J Wood Sci 47:383–388

    Article CAS  Google Scholar 

  40. Chu A, Dinkova A, Davin LB, Bedgar DL, Lewis NG (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases fromForsythia intermedia. J Biol Chem 268:27026–27033

    CAS PubMed  Google Scholar 

  41. Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase fromForsythia intermedia. J Biol Chem 271:29473–29482

    Article CAS PubMed  Google Scholar 

  42. Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627

    Article CAS PubMed  Google Scholar 

  43. Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park HJ, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723

    Article CAS PubMed  Google Scholar 

  44. Umezawa T, Davin LB, Yamamoto E, Kingston DGI, Lewis NG (1990) Lignan biosynthesis in Forsythia species. J Chem Soc Chem Commun 1405–1408

  45. Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (−)-secoisolariciresinol and (−)-matairesinol withForsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217

    CAS PubMed  Google Scholar 

  46. Okunishi T, Sakakibara N, Suzuki S, Umezawa T, Shimada M (2004) Stereochemistry of matairesinol formation byDaphne secoisolariciresinol dehydrogenase. J Wood Sci 50:77–81

    Article CAS  Google Scholar 

  47. Umezawa T (2001) Biosynthesis of lignans and related phenylpropanoid compounds. Regul Plant Growth Dev 36:57–67

    CAS  Google Scholar 

  48. Xia Z-Q, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623

    Article CAS PubMed  Google Scholar 

  49. Youn B, Moinuddin SGA, Davin LB, Lewis NG (2005) Cyrstal structures of apo-form and binary/ternary complexes ofPodophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J Biol Chem 280:12917–12926

    Article CAS PubMed  Google Scholar 

  50. Moinuddin SGA, Youn B, Bedgar DL, Costa MA, Helms GL, Kang CH, Davin LB, Lewis NG (2006) Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer inPodophyllum peltatum. Org Biol Chem 4:808–816

    Article CAS  Google Scholar 

  51. Dewick PM (1989) Biosynthesis of lignans. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 5. Structure elucidation (part B). Elsevier, Amsterdam, pp 459–503

    Google Scholar 

  52. Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor ofPodophyllum lignans. Phytochemistry 30:1489–1492

    Article CAS  Google Scholar 

  53. Sakakibara N, Suzuki S, Umezawa T, Shimada M (2003) Biosynthesis of yatein inAnthriscus sylvestris. Org Biomol Chem 1:2474–2485

    Article CAS PubMed  Google Scholar 

  54. Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142

    Article CAS PubMed  Google Scholar 

  55. Kuhlmann S, Kranz K, Lücking B, Alfermann AW, Petersen M (2002) Aspects of cytotoxic lignan biosynthesis in suspension cultures ofLinum nodiflorum. Phytochem Rev 1:37–43

    Article CAS  Google Scholar 

  56. Molog GA, Empt U, Kuhlmann S, van Uden W, Pras N, Alfermann AW, Petersen M (2001) Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures ofLinum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214:288–294

    Article CAS PubMed  Google Scholar 

  57. Kranz K, Petersen M (2003)β-Peltatin 6-O-methyltransferase from suspension cultures ofLinum nodiflorum. Phytochemistry 64:453–458

    Article CAS PubMed  Google Scholar 

  58. Umezawa T, Li L, Suzuki S, Sakakibara N, Nakatsubo T, Chiang VL (2004) A novel O-methyltransferase catalyzing a regioselective methylation of lignan. Proceedings of the 49th Lignin Symposium, Tsukuba, Japan, pp 33–36

  59. Puri SC, Nazir A, Chawla R, Arora R, Siyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungusTrametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article CAS PubMed  Google Scholar 

  60. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates fromPodophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article CAS PubMed  Google Scholar 

  61. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production byTaxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article CAS PubMed  Google Scholar 

  62. Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, Woolley JG (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35

    Article CAS  Google Scholar 

  63. Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2:307–320

    Article CAS  Google Scholar 

  64. Kato MJ, Chu A, Davin LB, Lewis NG (1998) Biosynthesis of antioxidant lignans inSesamum indicum seeds. Phytochemistry 47:583–591

    Article CAS  Google Scholar 

  65. Jiao Y, Davin LB, Lewis NG (1998) Furanofuran lignan metabolism as a function of seed maturation inSesamum indicum: methylenedioxy bridge formation. Phytochemistry 49:387–394

    Article CAS  Google Scholar 

  66. Ono E, Nakai M, Fukui Y, Tominori N, Fukuchi-Mizunati M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by aSesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103:10116–10121

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Gottlieb OR (1972) Chemosystematics of the Lauraceae. Phytochemistry 11:1537–1570

    Article CAS  Google Scholar 

  68. Moinuddin SGA, Hishiyama S, Cho M-H, Davin LB, Lewis NG (2003) Synthesis and chiral HPLC analysis of the dibenzyltetrahydrofuran lignans, larreatricins, 8′-epi-larreatricins, 3,3′-didemethoxyverrucosins andmeso-3,3′-didemethoxynectandrin B in the creosote bush (Larrea tridentata): evidence for regiospecific control of coupling. Org Biomol Chem 1:2307–2313

    Article CAS PubMed  Google Scholar 

  69. Lopes NP, Yoshida M, Kato MJ (2004) Biosynthesis of tetrahydrofuran lignans inVirola surinamensis. Brazil J Pharm Sci 40:53–57

    CAS  Google Scholar 

  70. Koeduka T, Fridman E, Gang DR, Vassão DG, Jackson RL, Kish CM, Orlova I, Spassova SM, Lewis NG, Noel JP, Baiga TJ, Dudareva N, Pichersky E (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci USA 103:10128–10133

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Vassão DG, Gang DR, Koeduka T, Jackson B, Pichersky E, Davin LB, Lewis NG (2006) Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org Biomol Chem 4:2733–2744

    Article PubMed  Google Scholar 

  72. Castro MA, Gordaliza M, Miguel del Corral J, San Fericiano A (1996) The distribution of lignanoids in the order Coniferae. Phytochemistry 41:995–1011

    Article CAS  Google Scholar 

  73. Erdtman H, Harmatha J (1979) Phenolic and terpenoid heartwood constituents ofLibocedrus yateensis. Phytochemistry 18:1495–1500

    Article CAS  Google Scholar 

  74. Begley MJ, Davies RV, Henley-Smith P, Whiting DA (1973) Constitution of sequirin-D (Sequoia sempervirens), a novel dihydronaphtalene norlignan. J Chem Soc Chem Commun 649–650

  75. Begley MJ, Davies RV, Henley-Smith P, Whiting DA (1978) The constitution of (1R)-sequirin-D (Sequoia sempervirens), a biogenetically novel norlignan, by direct X-ray analysis. J Chem Soc Perkin Trans 1 750–754

    Article  Google Scholar 

  76. Plieninger H, Schwarz B, Jaggy H, Huber-Patz U, Rodewald H, Irngartinger H, Weinges K (1986) Natural products from medicinal plants, XXIV-isolation, structure determination and synthesis of (Z,Z)-4-4′-(1,4-pentadiene-1,5-diyl) diphenol, an unusual natural product from the leaves of the Ginkgo tree (Ginkgo biloba L.). Liebigs Ann Chem 1772–1778

  77. Daniels P, Erdtman H, Nishimura K, Norin T (1972) Athrotaxin, a C17-phenolic constituent fromAthrotaxis selaginoides Don. J Chem Soc Chem Commun 246–247

  78. Enoki A, Takahama S, Kitao K (1977) The extractives of Metasekoia,Metasequoia glyptostroboides Hu et Cheng. I. Mokuzai Gakkaishi 23:579–586

    CAS  Google Scholar 

  79. Enoki A, Takahama S, Kitao K (1977) The extractives of Metasekoia,Metasequoia glyptostroboides Hu et Cheng. II. Mokuzai Gakkaishi 23:587–593

    CAS  Google Scholar 

  80. Tsui Y, Brown GD (1996) (+)-Nyasol fromAsparagus cochinchinensis. Phytochemistry 43:1413–1415

    Article CAS  Google Scholar 

  81. Nikaido T, Ohmoto T, Noguchi H, Kinoshita T, Saitoh H, Sankawa U (1981) Inhibitors of cyclic AMP phosphodiesterase in medicinal plants. Planta Medica 43:18–23

    Article CAS PubMed  Google Scholar 

  82. Terada K, Kamisako W (1999)1H-NMR and mass spectral study of a D-enriched acetylenic norlignan, asparenyol, from cultured cells ofAsparagus officinalis. Biol Pharm Bull 22:561–566

    Article CAS PubMed  Google Scholar 

  83. Abegaz BM, Ngadjui BT, Bezabih M, Mdee LK (1999) Novel natural products from marketed plants of eastern and southern Africa. Pure Appl Chem 71:919–926

    Article CAS  Google Scholar 

  84. Kinjo J, Furusawa J, Nohara T (1985) Two novel aromatic glycosides, pueroside-A and-B, fromPuerariae radix. Tetrahedron Lett 26:6101–6102

    Article CAS  Google Scholar 

  85. Shirataki Y, Tagaya Y, Yokoe I, Komatsu M (1987) Sophoraside A, a new aromatic glycoside from the roots ofSophora japonica. Chem Pharm Bull 35:1637–1640

    Article CAS  Google Scholar 

  86. Nohara T, Kinjo J, Furusama J, Sakai Y, Inoue M, Shirataki Y, Ishibashi Y, Yokoe I, Komatsu M (1993) But-2-enolides fromPueraria lobata and revised structures of puerosides A, B and sophoroside A. Phytochemistry 31:1207–1210

    Article  Google Scholar 

  87. Kogiso S, Hosozawa S, Wada K, Munakata K (1974) Daphneolone in roots ofDaphne odora. Phytochemistry 13:2332–2334

    Article CAS  Google Scholar 

  88. Beracierta AP, Whiting DA (1978) Stereoselective total syntheses of the (±)-di-O-methyl ethers of agatharesinol, sequirin-A, and hinokiresinol, and of (±)-tri-O-methylsequrin-E, characteristic norlignans of Coniferae. J Chem Soc Perkin Trans 1 1257–1263

    Article  Google Scholar 

  89. Birch AJ, Liepa AJ (1978) Biosynthesis. In: Rao CBS (ed) Chemistry of lignans. Andhra University Press, Andhra Pradesh, pp 307–327

    Google Scholar 

  90. Suzuki S, Nakatsubo T, Umezawa T, Shimada M (2002) First in vitro norlignan formation withAsparagus officinalis enzyme preparation. Chem Commun 1088–1089

  91. Suzuki S, Yamamura M, Shimada M, Umezawa T (2004) A heart-wood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by aCryptomeria japonica enzyme preparation. Chem Commun 2838–2839

  92. Zhang YM, Tan NH, He M, Lu Y, Shang SQ, Zheng QT (2004) Sequosempervirin A, a novel spirocyclic compounds fromSequoia sempervirens. Tetrahedron Lett 45:4319–4321

    Article CAS  Google Scholar 

  93. Davin LB, Lewis NG (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:398–406

    Article CAS PubMed  Google Scholar 

  94. Imai T, Nomura M, Fukushima K (2006) Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J Plant Physiol 163:483–487

    Article CAS PubMed  Google Scholar 

  95. Imai T, Nomura M, Matsushita Y, Fukushima K (2006) Hinokiresinol is not a precursor of agatharesinol in the norlignan biosynthetic pathway in Japanese cedar. J Plant Physiol 163:1221–1228

    Article CAS PubMed  Google Scholar 

  96. Imai T, Takino M, Itoh, E, Fukushima K (2006) In vitro formation of Sequirin-C by a microsomal fraction prepared fromCryptomeria japonica transition wood. Abstract of the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, p 70

  97. Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2006) Expressed sequence tags fromCryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Sustainability Science, Kyoto University, Uji, Kyoto, 611-0011, Japan

    Shiro Suzuki & Toshiaki Umezawa

  2. Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan

    Toshiaki Umezawa

Authors
  1. Shiro Suzuki

    You can also search for this author inPubMed Google Scholar

  2. Toshiaki Umezawa

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toToshiaki Umezawa.

About this article

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp