Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Adams WR, Kraft LM (1963) Epizootic diarrhea of infant mice: indentification of the etiologic agent. Science 141(3578):359–360

    Article CAS PubMed  Google Scholar 

  2. Malherbe H, Harwin R (1963) The cytopathic effects of vervet monkey viruses. S Afr Med J 37(4):407–411

    CAS PubMed  Google Scholar 

  3. Bishop RF et al (1973) Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2(7841):1281–1283

    Article CAS PubMed  Google Scholar 

  4. Flewett TH, Bryden AS, Davies H (1973) Letter: Virus particles in gastroenteritis. Lancet 2(7844):1497

    Article CAS PubMed  Google Scholar 

  5. Trojnar E et al (2010) The genome segments of a group D rotavirus possess group A-like conserved termini but encode group-specific proteins. J Virol 84(19):10254–10265

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Walker PJ et al (2019) Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch Virol 164(9):2417–2429

    Article CAS PubMed  Google Scholar 

  7. Matthijnssens J et al (2012) VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol 157(6):1177–1182

    Article CAS PubMed  Google Scholar 

  8. Deol P et al (2017) Avian group D rotaviruses: structure, epidemiology, diagnosis, and perspectives on future research challenges. Pathogens 6(4):53

    Article PubMed Central CAS  Google Scholar 

  9. Alaoui Amine S et al (2020) Evidence for zoonotic transmission of species A rotavirus from goat and cattle in nomadic herds in Morocco, 2012–2014. Virus Genes 56(5):582–593

    Article CAS PubMed  Google Scholar 

  10. Martella V et al (2010) Zoonotic aspects of rotaviruses. Vet Microbiol 140(3–4):246–255

    Article CAS PubMed  Google Scholar 

  11. Sadiq A et al (2019) Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015–2016. PLoS ONE 14(7):e0220387

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Joshi MS et al (2017) Identification of group B rotavirus as an etiological agent in the gastroenteritis outbreak in Maharashtra, India. J Med Virol 89(12):2244–2248

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Joshi MS, Jare VM, Gopalkrishna V (2017) Group C rotavirus infection in patients with acute gastroenteritis in outbreaks in western India between 2006 and 2014. Epidemiol Infect 145(2):310–315

    Article CAS PubMed  Google Scholar 

  14. Chen CM et al (1985) Chinese adult rotavirus is a group B rotavirus. Lancet 2(8464):1123–1124

    Article CAS PubMed  Google Scholar 

  15. Tao H (1988) Rotavirus and adult diarrhea. Adv Virus Res 35:193–218

    Article CAS PubMed  Google Scholar 

  16. Troeger C et al (2018) Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 172(10):958–965

    Article PubMed PubMed Central  Google Scholar 

  17. Rojas MA et al (2017) Identification of two novel Rotavirus A genotypes, G35 and P[50], from Peruvian alpaca faeces. Infect Genet Evol 55:71–74

    Article PubMed PubMed Central  Google Scholar 

  18. Desselberger U (2014) Rotaviruses. Virus Res 190:75–96

    Article CAS PubMed  Google Scholar 

  19. Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15(1):29–56

    Article PubMed  Google Scholar 

  20. Hull JJ et al (2011) United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr Infect Dis J 30(1 Suppl):S42–S47

    Article PubMed  Google Scholar 

  21. Iturriza-Gomara M et al (2011) Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect 139(6):895–909

    Article CAS PubMed  Google Scholar 

  22. Matthijnssens J et al (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82(7):3204–3219

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Angel J, Franco MA, Greenberg HB (2008) Rotaviruses. In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology. Academic Press, Oxford, pp 507–513

    Chapter  Google Scholar 

  24. Matthijnssens J et al (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153(8):1621–1629

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Matthijnssens J et al (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8):1397–1413

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Matthijnssens J, Van Ranst M (2012) Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2(4):426–433

    Article CAS PubMed  Google Scholar 

  27. Hardy S et al (2010) Reverse genetics in eukaryotes. Biol Cell 102(10):561–580

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Potgieter AC, Steele AD, van Dijk AA (2002) Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes. J Gen Virol 83(Pt 9):2215–2223

    Article CAS PubMed  Google Scholar 

  29. Nolden T et al (2016) Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof. Sci Rep 6(1):23887

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Desselberger U (2017) Reverse genetics of rotavirus. Proc Natl Acad Sci USA 114(9):2106–2108

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Beitzel B, Hulseberg CE, Palacios G (2019) Reverse genetics systems as tools to overcome the genetic diversity of Lassa virus. Curr Opin Virol 37:91–96

    Article PubMed  Google Scholar 

  32. Komoto S, Taniguchi K (2006) Reverse genetics systems of segmented double-stranded RNA viruses including rotavirus. Futur Virol 1(6):833–846

    Article CAS  Google Scholar 

  33. Imai M et al (1983) Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J Virol 47(1):125–136

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Gorziglia MI, Collins PL (1992) Intracellular amplification and expression of a synthetic analog of rotavirus genomic RNA bearing a foreign marker gene: mapping cis-acting nucleotides in the 3’-noncoding region. Proc Natl Acad Sci USA 89(13):5784–5788

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Chen D et al (2001) Features of the 3’-consensus sequence of rotavirus mRNAs critical to minus strand synthesis. Virology 282(2):221–229

    Article CAS PubMed  Google Scholar 

  36. Ren L et al (2019) Profiling of rotavirus 3’UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication. J Biol Chem 294(15):5993–6006

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Patton JT, Spencer E (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277(2):217–225

    Article CAS PubMed  Google Scholar 

  38. McDonald SM et al (2016) Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol 14(7):448–460

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Ogden KM, Johne R, Patton JT (2012) Rotavirus RNA polymerases resolve into two phylogenetically distinct classes that differ in their mechanism of template recognition. Virology 431(1–2):50–57

    Article CAS PubMed  Google Scholar 

  40. Chizhikov V, Patton JT (2000) A four-nucleotide translation enhancer in the 3’-terminal consensus sequence of the nonpolyadenylated mRNAs of rotavirus. RNA 6(6):814–825

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Deo RC et al (2002) Recognition of the rotavirus mRNA 3’ consensus by an asymmetric NSP3 homodimer. Cell 108(1):71–81

    Article CAS PubMed  Google Scholar 

  42. Gratia M, Vende P, Charpilienne A, Baron HC, Laroche C, Sarot E, Pyronnet S, Duarte M, Poncet D (2016) Challenging the roles of NSP3 and untranslated regions in Rotavirus mRNA translation. PLoS One 11(1):e0145998

    Article PubMed PubMed Central  Google Scholar 

  43. Groft CM, Burley SK (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9(6):1273–1283

    Article CAS PubMed  Google Scholar 

  44. Vende P et al (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3’ end. J Virol 74(15):7064–7071

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Piron M et al (1999) Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J Virol 73(7):5411–5421

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Piron M et al (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17(19):5811–5821

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Tortorici MA, Shapiro BA, Patton JT (2006) A base-specific recognition signal in the 5’ consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. RNA 12(1):133–146

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Barro M et al (2001) Identification of sequences in rotavirus mRNAs important for minus strand synthesis using antisense oligonucleotides. Virology 288(1):71–80

    Article CAS PubMed  Google Scholar 

  49. Guglielmi KM, McDonald SM, Patton JT (2010) Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. J Biol Chem 285(24):18123–18128

    Article CAS PubMed PubMed Central  Google Scholar 

  50. De Lorenzo G et al (2016) An Inhibitory motif on the 5’UTR of several rotavirus genome segments affects protein expression and reverse genetics strategies. PLoS ONE 11(11):e0166719

    Article PubMed PubMed Central CAS  Google Scholar 

  51. Settembre EC et al (2011) Atomic model of an infectious rotavirus particle. EMBO J 30(2):408–416

    Article CAS PubMed  Google Scholar 

  52. McClain B et al (2010) X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 397(2):587–599

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Aoki ST et al (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324(5933):1444–1447

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Estrozi LF et al (2013) Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425(1):124–132

    Article CAS PubMed  Google Scholar 

  55. Lundgren O, Svensson L (2001) Pathogenesis of rotavirus diarrhea. Microbes Infect 3(13):1145–1156

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Trask SD et al (2010) A rotavirus spike protein conformational intermediate binds lipid bilayers. J Virol 84(4):1764–1770

    Article CAS PubMed  Google Scholar 

  57. Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80 (Pt 4)(4):943–948

    Article  Google Scholar 

  58. Barbe L et al (2018) Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci Rep 8(1):12961

    Article PubMed PubMed Central CAS  Google Scholar 

  59. Fleming FE et al (2014) Relative roles of GM1 ganglioside, N-acylneuraminic acids, and alpha2beta1 integrin in mediating rotavirus infection. J Virol 88(8):4558–4571

    Article PubMed PubMed Central CAS  Google Scholar 

  60. Torres-Flores JM et al (2015) The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 475:172–178

    Article CAS PubMed  Google Scholar 

  61. Crawford SE et al (2017) Rotavirus infection. Nat Rev Dis Primers 3:17083

    Article PubMed PubMed Central  Google Scholar 

  62. Hu L et al (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485(7397):256–259

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12(6):271–278

    Article CAS PubMed  Google Scholar 

  64. Arias CF, Silva-Ayala D, Lopez S (2015) Rotavirus entry: a deep journey into the cell with several exits. J Virol 89(2):890–893

    Article PubMed CAS  Google Scholar 

  65. Gutierrez M et al (2010) Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 84(18):9161–9169

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Sanchez-San Martin C et al (2004) Characterization of rotavirus cell entry. J Virol 78(5):2310–2318

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Diaz-Salinas MA et al (2014) Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 88(8):4389–4402

    Article PubMed PubMed Central CAS  Google Scholar 

  68. Cohen J et al (1979) Activation of rotavirus RNA polymerase by calcium chelation. Arch Virol 60(3–4):177–186

    Article CAS PubMed  Google Scholar 

  69. Periz J et al (2013) Rotavirus mRNAS are released by transcript-specific channels in the double-layered viral capsid. Proc Natl Acad Sci U S A 110(29):12042–12047

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Long CP, McDonald SM (2017) Rotavirus genome replication: Some assembly required. PLoS Pathog 13(4):e1006242

    Article PubMed PubMed Central CAS  Google Scholar 

  71. Ding K et al (2019) In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat Commun 10(1):2216

    Article PubMed PubMed Central CAS  Google Scholar 

  72. Trask SD, McDonald SM, Patton JT (2012) Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 10(3):165–177

    Article CAS PubMed PubMed Central  Google Scholar 

  73. Borodavka A et al (2017) Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. Elife 6:e27453

    Article PubMed PubMed Central  Google Scholar 

  74. Taylor JA, O’Brien JA, Yeager M (1996) The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J 15(17):4469–4476

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Trask SD, Dormitzer PR (2006) Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 80(22):11293–11304

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Trejo-Cerro O et al (2018) Actin-dependent nonlytic rotavirus exit and infectious virus morphogenetic pathway in nonpolarized cells. J Virol 92(6):e02076-e2117

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Cuadras MA, Greenberg HB (2003) Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology 313(1):308–321

    Article CAS PubMed  Google Scholar 

  78. Delmas O et al (2004) Spike protein VP4 assembly with maturing rotavirus requires a postendoplasmic reticulum event in polarized caco-2 cells. J Virol 78(20):10987–10994

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Altenburg BC, Graham DY, Estes MK (1980) Ultrastructural study of rotavirus replication in cultured cells. J Gen Virol 46(1):75–85

    Article CAS PubMed  Google Scholar 

  80. Cevallos Porta D et al (2016) Polarized rotavirus entry and release from differentiated small intestinal cells. Virology 499:65–71

    Article CAS PubMed  Google Scholar 

  81. Isa P et al (2020) Rotaviruses associate with distinct types of extracellular vesicles. Viruses 12(7):763

    Article CAS PubMed Central  Google Scholar 

  82. Santiana M et al (2018) Vesicle-cloaked virus clusters are optimal units for inter-organismal viral transmission. Cell Host Microbe 24(2):208-220-e8

    Article CAS PubMed PubMed Central  Google Scholar 

  83. Gardet A et al (2006) Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J Virol 80(8):3947–3956

    Article CAS PubMed PubMed Central  Google Scholar 

  84. Kobayashi T et al (2007) A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1(2):147–157

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Richards JE, Desselberger U, Lever AM (2013) Experimental pathways towards developing a rotavirus reverse genetics system: synthetic full length rotavirus ssRNAs are neither infectious nor translated in permissive cells. PLoS ONE 8(9):e74328

    Article CAS PubMed PubMed Central  Google Scholar 

  86. Navarro A et al (2016) Rotavirus replication and reverse genetics. In: Svensson L et al (eds) Viral gastroenteritis. Academic Press, Boston, pp 121–143

    Chapter  Google Scholar 

  87. Komoto S, Taniguchi K (2013) Genetic engineering of rotaviruses by reverse genetics. Microbiol Immunol 57(7):479–486

    CAS PubMed  Google Scholar 

  88. Fukuda S et al (2020) Rapid generation of rotavirus single-gene reassortants by means of eleven plasmid-only based reverse genetics. J Gen Virol 101(8):806–815

    Article CAS PubMed  Google Scholar 

  89. Komoto S, Sasaki J, Taniguchi K (2006) Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci USA 103(12):4646–4651

    Article CAS PubMed PubMed Central  Google Scholar 

  90. Enami M et al (1990) Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci U S A 87(10):3802–3805

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Komoto S et al (2020) Generation of recombinant rotaviruses from just 11 cDNAs encoding a viral genome. Virus Res 286:198075

    Article CAS PubMed  Google Scholar 

  92. Conrad T et al (2020) Maximizing transcription of nucleic acids with efficient T7 promoters. Commun Biol 3(1):439

    Article CAS PubMed PubMed Central  Google Scholar 

  93. Komoto S et al (2008) Generation of recombinant rotavirus with an antigenic mosaic of cross-reactive neutralization epitopes on VP4. J Virol 82(13):6753–6757

    Article CAS PubMed PubMed Central  Google Scholar 

  94. Trask SD et al (2010) Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc Natl Acad Sci USA 107(43):18652–18657

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Criglar J et al (2011) Reconciliation of rotavirus temperature-sensitive mutant collections and assignment of reassortment groups D, J, and K to genome segments. J Virol 85(10):5048–5060

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Troupin C et al (2010) Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. J Virol 84(13):6711–6719

    Article CAS PubMed PubMed Central  Google Scholar 

  97. Desselberger U (1996) Genome rearrangements of rotaviruses. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research. Academic Press, pp 69–95

    Google Scholar 

  98. Schnepf N et al (2008) Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. J Virol 82(7):3689–3696

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Bellinzoni RC et al (1987) Isolation of group A swine rotaviruses displaying atypical electropherotypes. J Clin Microbiol 25(5):952–954

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Hundley F et al (1985) Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology 143(1):88–103

    Article CAS PubMed  Google Scholar 

  101. Kojima K et al (2000) Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus Res 67(2):163–171

    Article CAS PubMed  Google Scholar 

  102. Kobayashi T et al (2010) An improved reverse genetics system for mammalian orthoreoviruses. Virology 398(2):194–200

    Article CAS PubMed  Google Scholar 

  103. Johne R et al (2016) Generation of an avian-mammalian rotavirus reassortant by using a helper virus-dependent reverse genetics system. J Virol 90(3):1439–1443

    Article CAS PubMed PubMed Central  Google Scholar 

  104. Boyce M, Celma CC, Roy P (2008) Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. J Virol 82(17):8339–8348

    Article CAS PubMed PubMed Central  Google Scholar 

  105. Boyce M, Roy P (2007) Recovery of infectious bluetongue virus from RNA. J Virol 81(5):2179–2186

    Article CAS PubMed  Google Scholar 

  106. Duponchel S et al (2014) Transfection of exogenous rotavirus rearranged RNA segments in cells infected with a WT rotavirus results in subsequent gene rearrangements. J Gen Virol 95(Pt 9):2089–2098

    Article CAS PubMed  Google Scholar 

  107. Kanai Y et al (2017) Entirely plasmid-based reverse genetics system for rotaviruses. Proc Natl Acad Sci USA 114(9):2349–2354

    Article CAS PubMed PubMed Central  Google Scholar 

  108. Diller JR et al (2019) Rotavirus species B encodes a functional fusion-associated small transmembrane protein. J Virol 93(20):e00813-e819

    Article CAS PubMed PubMed Central  Google Scholar 

  109. Ciechonska M, Duncan R (2014) Reovirus FAST proteins: virus-encoded cellular fusogens. Trends Microbiol 22(12):715–724

    Article CAS PubMed  Google Scholar 

  110. Brown CW et al (2009) The p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus neuropathogenesis. J Virol 83(2):552–561

    Article CAS PubMed  Google Scholar 

  111. Komoto S et al (2017) Reverse genetics system demonstrates that rotavirus nonstructural protein NSP6 is not essential for viral replication in cell culture. J Virol 91(21):e00695-e717

    Article CAS PubMed PubMed Central  Google Scholar 

  112. Komoto S et al (2018) Generation of recombinant rotaviruses expressing fluorescent proteins by using an optimized reverse genetics system. J Virol 92(13):e00588-e618

    Article CAS PubMed PubMed Central  Google Scholar 

  113. Komoto S et al (2019) Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome. J Virol 93(8):e02207-e2218

    Article CAS PubMed PubMed Central  Google Scholar 

  114. Sanchez-Tacuba L et al (2020) An optimized reverse genetics system suitable for efficient recovery of simian, human, and murine-like rotaviruses. J Virol 94(18):e01294-e1320

    Article PubMed PubMed Central  Google Scholar 

  115. Jais PH et al (2019) C3P3-G1: first generation of a eukaryotic artificial cytoplasmic expression system. Nucleic Acids Res 47(5):2681–2698

    Article CAS PubMed PubMed Central  Google Scholar 

  116. Eaton HE et al (2017) African swine fever virus NP868R capping enzyme promotes reovirus rescue during reverse genetics by promoting reovirus protein expression, virion assembly, and RNA incorporation into infectious virions. J Virol 91(11):e02416-e2516

    Article CAS PubMed PubMed Central  Google Scholar 

  117. Meade NJ (2016) Intervention strategies against rotavirus in pigs. PhD Thesis, University of Nottingham, Nottingham, UK

  118. Komoto S et al (2020) Reverse genetics system for human rotaviruses. Microbiol Immunol 64(6):401–406

    Article CAS PubMed  Google Scholar 

  119. Komoto S et al (2011) Modification of the trypsin cleavage site of rotavirus VP4 to a furin-sensitive form does not enhance replication efficiency. J Gen Virol 92(Pt 12):2914–2921

    Article CAS PubMed  Google Scholar 

  120. Schrauwen EJ et al (2012) The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J Virol 86(7):3975–3984

    Article CAS PubMed PubMed Central  Google Scholar 

  121. Arias CF et al (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70(9):5832–5839

    Article CAS PubMed PubMed Central  Google Scholar 

  122. Rodriguez JM et al (2014) New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog 10(5):e1004157

    Article PubMed PubMed Central CAS  Google Scholar 

  123. Trask SD et al (2013) Mutations in the rotavirus spike protein VP4 reduce trypsin sensitivity but not viral spread. J Gen Virol 94(Pt 6):1296–1300

    Article CAS PubMed PubMed Central  Google Scholar 

  124. Menou A et al (2017) Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Physiol Lung Cell Mol Physiol 312(5):L657–L668

    Article PubMed  Google Scholar 

  125. Antalis TM et al (2010) The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 428(3):325–346

    Article CAS PubMed  Google Scholar 

  126. Straus MR, Whittaker GR (2017) A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site. PLoS ONE 12(3):e0174827

    Article PubMed PubMed Central CAS  Google Scholar 

  127. Keelapang P et al (2004) Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78(5):2367–2381

    Article CAS PubMed PubMed Central  Google Scholar 

  128. Crawford SE et al (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75(13):6052–6061

    Article CAS PubMed PubMed Central  Google Scholar 

  129. Mattion NM et al (1991) Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181(1):295–304

    Article CAS PubMed  Google Scholar 

  130. Rainsford EW, McCrae MA (2007) Characterization of the NSP6 protein product of rotavirus gene 11. Virus Res 130(1–2):193–201

    Article CAS PubMed  Google Scholar 

  131. Viskovska M et al (2014) Probing the sites of interactions of rotaviral proteins involved in replication. J Virol 88(21):12866–12881

    Article PubMed PubMed Central CAS  Google Scholar 

  132. Holloway G et al (2015) Rotavirus NSP6 localizes to mitochondria via a predicted N-terminal a-helix. J Gen Virol 96(12):3519–3524

    Article CAS PubMed  Google Scholar 

  133. Holloway G, Coulson BS (2013) Innate cellular responses to rotavirus infection. J Gen Virol 94(Pt 6):1151–1160

    Article CAS PubMed  Google Scholar 

  134. Halasz P, Holloway G, Coulson BS (2010) Death mechanisms in epithelial cells following rotavirus infection, exposure to inactivated rotavirus or genome transfection. J Gen Virol 91(Pt 8):2007–2018

    Article CAS PubMed  Google Scholar 

  135. Martin-Latil S et al (2007) Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol 81(9):4457–4464

    Article CAS PubMed PubMed Central  Google Scholar 

  136. Sen A et al (2011) The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol 85(8):3717–3732

    Article CAS PubMed PubMed Central  Google Scholar 

  137. Wu H et al (1998) Serological and genomic characterization of human rotaviruses detected in China. J Med Virol 55(2):168–176

    Article CAS PubMed  Google Scholar 

  138. Gonzalez SA, Burrone OR (1989) Porcine OSU rotavirus segment II sequence shows common features with the viral gene of human origin. Nucleic Acids Res 17(15):6402

    Article CAS PubMed PubMed Central  Google Scholar 

  139. Graff JW, Ettayebi K, Hardy ME (2009) Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog 5(1):e1000280

    Article PubMed PubMed Central CAS  Google Scholar 

  140. Bagchi P et al (2010) Rotavirus nonstructural protein 1 suppresses virus-induced cellular apoptosis to facilitate viral growth by activating the cell survival pathways during early stages of infection. J Virol 84(13):6834–6845

    Article CAS PubMed PubMed Central  Google Scholar 

  141. Barro M, Patton JT (2005) Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci USA 102(11):4114–4119

    Article CAS PubMed PubMed Central  Google Scholar 

  142. Papa G et al (2019) Recombinant rotaviruses rescued by reverse genetics reveal the role of NSP5 hyperphosphorylation in the assembly of viral factories. J Virol 94(1):e01110-e1119

    Article PubMed PubMed Central  Google Scholar 

  143. Song Y et al (2020) Reverse genetics reveals a role of rotavirus vp3 phosphodiesterase activity in inhibiting rnase l signaling and contributing to intestinal viral replication in vivo. J Virol 94(9):e01952-e2019

    Article CAS PubMed PubMed Central  Google Scholar 

  144. Mohanty SK et al (2017) A point mutation in the rhesus rotavirus vp4 protein generated through a rotavirus reverse genetics system attenuates biliary atresia in the murine model. J Virol 91(15):e00510-e517

    Article CAS PubMed PubMed Central  Google Scholar 

  145. Mohanty SK et al (2017) The SRL peptide of rhesus rotavirus VP4 protein governs cholangiocyte infection and the murine model of biliary atresia. Hepatology 65(4):1278–1292

    Article CAS PubMed  Google Scholar 

  146. Criglar JM et al (2020) A genetically engineered rotavirus nsp2 phosphorylation mutant impaired in viroplasm formation and replication shows an early interaction between vNSP2 and cellular lipid droplets. J Virol 94(15):e00972-e1020

    Article CAS PubMed PubMed Central  Google Scholar 

  147. Falkenhagen A et al (2021) Rescue of infectious rotavirus reassortants by a reverse genetics system is restricted by the receptor-binding region of VP4. Viruses 13(3):363

    Article CAS PubMed PubMed Central  Google Scholar 

  148. Kanai Y et al (2019) Development of stable rotavirus reporter expression systems. J Virol 93(4):e01774-e1818

    Article CAS PubMed PubMed Central  Google Scholar 

  149. Kanai Y et al (2020) Reverse genetics approach for developing rotavirus vaccine candidates carrying VP4 and VP7 Genes cloned from clinical isolates of human rotavirus. J Virol 95(2):e01374-e1420

    Article PubMed PubMed Central  Google Scholar 

  150. McIntyre M et al (1987) Biophysical characterization of rotavirus particles containing rearranged genomes. J Gen Virol 68 (Pt 11)(11):2961–2966

    Article  Google Scholar 

  151. Ozawa M et al (2011) Replication-incompetent influenza A viruses that stably express a foreign gene. J Gen Virol 92(Pt 12):2879–2888

    Article CAS PubMed PubMed Central  Google Scholar 

  152. Desselberger U (2020) Potential of plasmid only based reverse genetics of rotavirus for the development of next-generation vaccines. Curr Opin Virol 44:1–6

    Article CAS PubMed  Google Scholar 

  153. McDonald SM, Patton JT (2011) Assortment and packaging of the segmented rotavirus genome. Trends Microbiol 19(3):136–144

    Article CAS PubMed  Google Scholar 

  154. Suzuki Y (2014) A possible packaging signal in the rotavirus genome. Genes Genet Syst 89(2):81–86

    Article CAS PubMed  Google Scholar 

  155. Hua J, Patton JT (1994) The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. Virology 198(2):567–576

    Article CAS PubMed  Google Scholar 

  156. Taniguchi K, Kojima K, Urasawa S (1996) Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153–155. J Virol 70(6):4125–4130

    Article CAS PubMed PubMed Central  Google Scholar 

  157. Patton JT et al (2001) Effect of intragenic rearrangement and changes in the 3’ consensus sequence on NSP1 expression and rotavirus replication. J Virol 75(5):2076–2086

    Article CAS PubMed PubMed Central  Google Scholar 

  158. Philip AA et al (2019) Collection of recombinant rotaviruses expressing fluorescent reporter proteins. Microbiol Resour Announc 8(27):e00523-e619

    Article PubMed PubMed Central  Google Scholar 

  159. Philip AA et al (2020) Simplified reverse genetics method to recover recombinant rotaviruses expressing reporter proteins. J Vis Exp 158:e61039

    Google Scholar 

  160. Chang-Graham AL et al (2019) rotavirus calcium dysregulation manifests as dynamic calcium signaling in the cytoplasm and endoplasmic reticulum. Sci Rep 9(1):10822

    Article PubMed PubMed Central CAS  Google Scholar 

  161. Navarro A, Trask SD, Patton JT (2013) Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. J Virol 87(11):6211–6220

    Article CAS PubMed PubMed Central  Google Scholar 

  162. Zhang X et al (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527(7579):531–534

    Article CAS PubMed PubMed Central  Google Scholar 

  163. Philip AA, Patton JT (2020) Expression of separate heterologous proteins from the Rotavirus NSP3 genome segment using a translational 2A stop-restart element. J Virol 94(18):e00959–00920

    Article PubMed PubMed Central  Google Scholar 

  164. Philip AA et al (2019) Generation of recombinant rotavirus expressing NSP3-UnaG fusion protein by a simplified reverse genetics system. J Virol 93(24):e01616-e1619

    Article CAS PubMed PubMed Central  Google Scholar 

  165. Komoto S et al (2016) Reassortment of Human and Animal Rotavirus Gene Segments in Emerging DS-1-Like G1P[8] Rotavirus Strains. PLoS ONE 11(2):e0148416

    Article PubMed PubMed Central CAS  Google Scholar 

  166. Leite JP et al (1996) Rotavirus G and P types circulating in Brazil: characterization by RT-PCR, probe hybridization, and sequence analysis. Arch Virol 141(12):2365–2374

    Article CAS PubMed  Google Scholar 

  167. Palombo EA (2002) Genetic analysis of Group A rotaviruses: evidence for interspecies transmission of rotavirus genes. Virus Genes 24(1):11–20

    Article CAS PubMed  Google Scholar 

  168. Li W et al (2010) Genomic analysis of codon, sequence and structural conservation with selective biochemical-structure mapping reveals highly conserved and dynamic structures in rotavirus RNAs with potential cis-acting functions. Nucleic Acids Res 38(21):7718–7735

    Article CAS PubMed PubMed Central  Google Scholar 

  169. Fajardo T Jr et al (2017) Rotavirus genomic RNA complex forms via specific RNA–RNA interactions: disruption of rna complex inhibits virus infectivity. Viruses 9(7):167

    Article PubMed Central CAS  Google Scholar 

  170. Mingo R et al (2017) Genetic determinants restricting the reassortment of heterologous NSP2 genes into the simian rotavirus SA11 genome. Sci Rep 7(1):9301

    Article PubMed PubMed Central CAS  Google Scholar 

  171. Falkenhagen A et al (2019) Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J Gen Virol 100(12):1595–1604

    Article CAS PubMed  Google Scholar 

  172. Patzina-Mehling C et al (2020) Potential of avian and mammalian species A rotaviruses to reassort as explored by plasmid only-based reverse genetics. Virus Res 286:e198027

    Article CAS  Google Scholar 

  173. Falkenhagen A et al (2020) Generation of simian rotavirus reassortants with VP4- and VP7-encoding genome segments from human strains circulating in Africa using reverse genetics. Viruses 12(2):201

    Article CAS PubMed Central  Google Scholar 

  174. Burnett E et al (2017) Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea. J Infect Dis 215(11):1666–1672

    Article PubMed  Google Scholar 

  175. Aliabadi N et al (2019) Global impact of rotavirus vaccine introduction on rotavirus hospitalisations among children under 5 years of age, 2008–16: findings from the Global Rotavirus Surveillance Network. Lancet Glob Health 7(7):e893–e903

    Article PubMed PubMed Central  Google Scholar 

  176. Burke RM et al (2019) Current and new rotavirus vaccines. Curr Opin Infect Dis 32(5):435–444

    Article CAS PubMed PubMed Central  Google Scholar 

  177. Soares-Weiser K et al (2019) Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev.https://doi.org/10.1002/14651858.CD008521.pub5

    Article PubMed PubMed Central  Google Scholar 

  178. Parker EP et al (2018) Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 13(1):97–118

    Article CAS PubMed  Google Scholar 

  179. Desselberger U (2017) Differences of rotavirus vaccine effectiveness by country: likely causes and contributing factors. Pathogens 6(4):65

    Article PubMed Central CAS  Google Scholar 

  180. Clark A et al (2019) Mortality reduction benefits and intussusception risks of rotavirus vaccination in 135 low-income and middle-income countries: a modelling analysis of current and alternative schedules. Lancet Glob Health 7(11):e1541–e1552

    Article PubMed PubMed Central  Google Scholar 

  181. Velasquez DE, Parashar U, Jiang B (2018) Decreased performance of live attenuated, oral rotavirus vaccines in low-income settings: causes and contributing factors. Expert Rev Vaccines 17(2):145–161

    CAS PubMed  Google Scholar 

  182. Weintraub ES et al (2014) Risk of intussusception after monovalent rotavirus vaccination. N Engl J Med 370(6):513–519

    Article CAS PubMed  Google Scholar 

  183. Fu C et al (2018) Rotavirus gastroenteritis infection among children vaccinated and unvaccinated with rotavirus vaccine in Southern China: a population-based assessment. JAMA Netw Open 1(4):e1813382

    Article  Google Scholar 

  184. Bines JE et al (2018) Human neonatal rotavirus vaccine (RV3-BB) to target rotavirus from birth. N Engl J Med 378(8):719–730

    Article CAS PubMed PubMed Central  Google Scholar 

  185. Velazquez FR et al (1996) Rotavirus infection in infants as protection against subsequent infections. N Engl J Med 335(14):1022–1028

    Article CAS PubMed  Google Scholar 

  186. Desselberger U, Huppertz HI (2011) Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 203(2):188–195

    Article CAS PubMed PubMed Central  Google Scholar 

  187. Nair N et al (2017) VP4- and VP7-specific antibodies mediate heterotypic immunity to rotavirus in humans. Sci Transl Med 9(395):eaam5434

    Article PubMed PubMed Central CAS  Google Scholar 

  188. Burns JW et al (1996) Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272(5258):104–107

    Article CAS PubMed  Google Scholar 

  189. Gorrell RJ, Bishop RF (1999) Homotypic and heterotypic serum neutralizing antibody response to rotavirus proteins following natural primary infection and reinfection in children. J Med Virol 57(2):204–211

    Article CAS PubMed  Google Scholar 

  190. Caddy SL et al (2020) Intracellular neutralisation of rotavirus by VP6-specific IgG. PLoS Pathog 16(8):e1008732

    Article CAS PubMed PubMed Central  Google Scholar 

  191. Kirkwood CD (2010) Genetic and antigenic diversity of human rotaviruses: potential impact on vaccination programs. J Infect Dis 202 Suppl(S1):S43–S48

    Article PubMed CAS  Google Scholar 

  192. Ramakrishnan G et al (2019) Rotavirus vaccine protection in low-income and middle-income countries. Lancet Infect Dis 19(7):673–674

    Article PubMed PubMed Central  Google Scholar 

  193. Murphy TV et al (2001) Intussusception among infants given an oral rotavirus vaccine. N Engl J Med 344(8):564–572

    Article CAS PubMed  Google Scholar 

  194. Kirkwood CD et al (2019) The rotavirus vaccine development pipeline. Vaccine 37(50):7328–7335

    Article PubMed PubMed Central  Google Scholar 

  195. Stobart CC, Moore ML (2014) RNA virus reverse genetics and vaccine design. Viruses 6(7):2531–2550

    Article PubMed PubMed Central CAS  Google Scholar 

  196. Uchida Y, Takemae N, Saito T (2014) Application of reverse genetics for producing attenuated vaccine strains against highly pathogenic avian influenza viruses. J Vet Med Sci 76(8):1111–1117

    Article PubMed PubMed Central  Google Scholar 

  197. Lopman BA et al (2016) The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control. PLoS Med 13(4):e1001999

    Article PubMed PubMed Central  Google Scholar 

  198. Philip AA, Patton JT (2021) Rotavirus as an expression platform of domains of the SARS-CoV-2 spike protein. Vaccines 9(5):449

    Article PubMed PubMed Central  Google Scholar 

  199. Philip AA et al (2020) Rotaviruses as neonatal vaccine expression vectors against other enteric pathogens. Processdings 50(1):53

    Google Scholar 

  200. Papp H et al (2014) Rotavirus strains in neglected animal species including lambs, goats and camelids. Virusdisease 25(2):215–222

    Article PubMed PubMed Central  Google Scholar 

  201. Luchs A, Timenetsky MDOC (2016) rotavirus gastroenteritis: post-vaccine era, genotypes and zoonotic transmission. Einstein (Sao Paulo) 14(2):278–287

    Article  Google Scholar 

  202. Ghosh S, Kobayashi N (2014) Exotic rotaviruses in animals and rotaviruses in exotic animals. Virusdisease 25(2):158–172

    Article PubMed PubMed Central  Google Scholar 

  203. Collins PJ, Martella V, O’Shea H (2008) Detection and characterization of group C rotaviruses in asymptomatic piglets in Ireland. J Clin Microbiol 46(9):2973–2979

    Article CAS PubMed PubMed Central  Google Scholar 

  204. Chinsangaram J et al (1995) Prevalence of group A and group B rotaviruses in the feces of neonatal dairy calves from California. Comp Immunol Microbiol Infect Dis 18(2):93–103

    Article CAS PubMed PubMed Central  Google Scholar 

  205. Almeida PR et al (2018) Diarrhea caused by rotavirus A, B, and C in suckling piglets from southern Brazil: molecular detection and histologic and immunohistochemical characterization. J Vet Diagn Invest 30(3):370–376

    Article CAS PubMed PubMed Central  Google Scholar 

  206. Vlasova AN, Amimo JO, Saif LJ (2017) Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses 9(3):48

    Article PubMed Central CAS  Google Scholar 

  207. Hull JJA et al (2020) Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States. PLoS ONE 15(12):e0244498

    Article CAS PubMed PubMed Central  Google Scholar 

  208. Saif LJ, Fernandez FM (1996) Group A rotavirus veterinary vaccines. J Infect Dis 174 Suppl 1(Suppl 1):S98-106

    Article CAS PubMed  Google Scholar 

  209. Tacharoenmuang R et al (2018) Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: Evidence for bovine-to-human zoonotic transmission. Infect Genet Evol 63:43–57

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the members in our laboratory for reading the manuscript and suggesting corrections.

Funding

This work was supported in part by the Agricultural Experiment Station of the University of Kentucky and the William Robert Mills Endowment Fund.

Author information

Authors and Affiliations

  1. Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA

    Tirth Uprety, Dan Wang & Feng Li

Authors
  1. Tirth Uprety
  2. Dan Wang
  3. Feng Li

Corresponding author

Correspondence toFeng Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Reimar Johne

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uprety, T., Wang, D. & Li, F. Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development.Arch Virol166, 2369–2386 (2021). https://doi.org/10.1007/s00705-021-05142-7

Download citation

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp