- Xihan Guo ORCID:orcid.org/0000-0001-7911-16401 na1,
- Xueqin Dai2,3 na1,
- Tao Zhou1,
- Han Wang1,
- Juan Ni1,
- Jinglun Xue4 &
- …
- Xu Wang1
8592Accesses
38Altmetric
3Mentions
Abstract
Y chromosome (ChrY), the male-specific sex chromosome, has been considered as a genetic wasteland. Aging-related mosaic loss of ChrY (LOY) has been known for more than half a century, but it was constantly considered as a neutral karyotype related to normal aging. These views have been challenged with genome-wide association studies identifying mosaic LOY in human somatic cells is the most commonly acquired mutation in male’s genome and is associated with a wide spectrum of human diseases including cancer, Alzheimer’s disease, and cardiovascular disease. These previously undescribed clinical significances deeply modify our perception on ChrY and open up a range of new questions. Here, we review the latest advances in our knowledge of the biological origins and clinical consequences of mosaic LOY. We highlight the association of mosaic LOY to pathogenic conditions and evaluate the cause-and-consequence relationships between mosaic LOY and pathogenesis. The known risk factors of mosaic LOY including age, genetic variants, ChrY structural aberrations and environmental stressors are discussed. In light of evidence from pioneering and more recent studies, we propose the micronucleation hypothesis and centromere-dysfunction and telomere-attrition models to explain how mosaic LOY occurs and why ChrY is prone to lose. We believe it is importantly and timely to extend mosaic LOY research from epidemiological associations to mechanistic studies. In this regard, we outline important gaps and assess several future directions from a biological and clinical perspective. An improved understanding of mosaic LOY will open new pathways to modify and increase healthy aging in males.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.





Similar content being viewed by others
References
Adikusuma F, Williams N, Grutzner F, Hughes J, Thomas P (2017) Targeted deletion of an entire chromosome using CRISPR/Cas9. Mol Ther 25:1736.https://doi.org/10.1016/j.ymthe.2017.05.021
Aitken RJ, Marshall Graves JA (2002) Human spermatozoa: the future of sex. Nature 415:963.https://doi.org/10.1038/415963a
Arseneault M, Monlong J, Vasudev NS, Laskar RS, Safisamghabadi M, Harnden P, Egevad L, Nourbehesht N, Panichnantakul P, Holcatova I, Brisuda A, Janout V, Kollarova H, Foretova L, Navratilova M et al (2017) Loss of chromosome Y leads to down regulation of KDM5D and KDM6C epigenetic modifiers in clear cell renal cell carcinoma. Sci Rep 7:44876.https://doi.org/10.1038/srep44876
Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124.https://doi.org/10.1038/nrg3366
Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9:4340.https://doi.org/10.1038/s41467-018-06545-y
Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho T-J, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D et al (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–499.https://doi.org/10.1038/nature13206
Bianchi NO (2009) Y chromosome structural and functional changes in human malignant diseases. Mutat Res Rev Mutat Res 682:21–27.https://doi.org/10.1016/j.mrrev.2009.02.001
Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320.https://doi.org/10.1038/nrg3424
Blackmon H, Demuth JP (2015) The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays 37:942–950.https://doi.org/10.1002/bies.201500040
Cannon-Albright LA, Farnham JM, Bailey M, Albright FS, Teerlink CC, Agarwal N, Stephenson RA, Thomas A (2014) Identification of specific Y chromosomes associated with increased prostate cancer risk. Prostate 74:991–998.https://doi.org/10.1002/pros.22821
Catalán J, Autio K, Kuosma E, Norppa H (1998) Age-dependent inclusion of sex chromosomes in lymphocyte micronuclei of man. Am J Hum Genet 63:1464–1472.https://doi.org/10.1086/302092
Colaco S, Modi D (2018) Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol 16:14.https://doi.org/10.1186/s12958-018-0330-5
Danielsson M, Halvardson J, Davies H, Moghadam BT, Mattisson J, Rychlicka-Buniowska E, Jaszczyński J, Heintz J, Lannfelt L, Giedraitis V, Ingelsson M, Dumanski JP, Forsberg LA (2019) Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur J Hum Genet.https://doi.org/10.1038/s41431-019-0533-z
Dorak MT, Karpuzoglu E (2012) Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet.https://doi.org/10.3389/fgene.2012.00268
Duijf PHG, Schultz N, Benezra R (2013) Cancer cells preferentially lose small chromosomes. Int J Cancer 132:2316–2326.https://doi.org/10.1002/ijc.27924
Dumanski JP, Rasi C, Lönn M, Davies H, Ingelsson M, Giedraitis V, Lannfelt L, Magnusson PKE, Lindgren CM, Morris AP, Cesarini D, Johannesson M, Tiensuu Janson E, Lind L, Pedersen NL et al (2015) Smoking is associated with mosaic loss of chromosome Y. Science 347:81–83.https://doi.org/10.1126/science.1262092
Dumanski JP, Lambert J-C, Rasi C, Giedraitis V, Davies H, Grenier-Boley B, Lindgren CM, Campion D, Dufouil C, Pasquier F, Amouyel P, Lannfelt L, Ingelsson M, Kilander L, Lind L et al (2016) Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am J Hum Genet 98:1208–1219.https://doi.org/10.1016/j.ajhg.2016.05.014
Dumanski JP, Halvardson J, Davies H, Rychlicka-Buniowska E, Mattisson J, Moghadam BT, Nagy N, Węglarczyk K, Bukowska-Strakova K, Danielsson M, Olszewski P, Piotrowski A, Ambicka A, Przewoźnik M, Bełch Ł et al (2019) Loss of Y in leukocytes, dysregulation of autosomal immune genes and disease risks. bioRxiv.https://doi.org/10.1101/673459
Dumont M, Gamba R, Gestraud P, Klaasen S, Worrall JT, De Vries SG, Boudreau V, Salinas-Luypaert C, Maddox PS, Lens SM, Kops GJPL, McClelland SE, Miga KH, Fachinetti D (2019) Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J 39:e102924.https://doi.org/10.15252/embj.2019102924
Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26:447–450.https://doi.org/10.1038/82586
Fachinetti D, Han Joo S, McMahon Moira A, Ly P, Abdullah A, Wong Alex J, Cleveland Don W (2015) DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell 33:314–327.https://doi.org/10.1016/j.devcel.2015.03.020
Farkas G, Jurányi Z, Székely G, Kocsis ZS, Gundy S (2016) Relationship between spontaneous frequency of aneuploidy and cancer risk in 2145 healthy Hungarian subjects. Mutagenesis 31:583–588.https://doi.org/10.1093/mutage/gew024
Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, Baracchi F, Girouard H, Misoch S, Giacobini E, Depypere H, Hampel H, for the Women’s Brain P, the Alzheimer Precision Medicine I (2018) Sex differences in Alzheimer disease—the gateway to precision medicine. Nat Rev Neurol 14:457–469.https://doi.org/10.1038/s41582-018-0032-9
Forsberg LA (2017) Loss of chromosome Y (LOY) in blood cells is associated with increased risk for disease and mortality in aging men. Hum Genet 136:657–663.https://doi.org/10.1007/s00439-017-1799-2
Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, Pakalapati G, Sandgren J, de Ståhl TD, Zaghlool A, Giedraitis V, Lannfelt L, Score J, Cross NCP, Absher D, Janson ET et al (2014) Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet 46:624–628.https://doi.org/10.1038/ng.2966
Forsberg LA, Halvardson J, Rychlicka-Buniowska E, Danielsson M, Moghadam BT, Mattisson J, Rasi C, Davies H, Lind L, Giedraitis V, Lannfelt L, Kilander L, Ingelsson M, Dumanski JP (2019) Mosaic loss of chromosome Y in leukocytes matters. Nat Genet 51:4–7.https://doi.org/10.1038/s41588-018-0267-9
Ganster C, Kämpfe D, Jung K, Braulke F, Shirneshan K, Machherndl-Spandl S, Suessner S, Bramlage CP, Legler TJ, Koziolek MJ, Haase D, Schanz J (2015) New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. Genes Chromosomes Cancer 54:717–724.https://doi.org/10.1002/gcc.22282
Gellen B, Thorin-Trescases N, Sosner P, Gand E, Saulnier P-J, Ragot S, Fraty M, Laugier S, Ducrocq G, Montaigne D, Llaty P, Rigalleau V, Zaoui P, Halimi J-M, Roussel R et al (2016) ANGPTL2 is associated with an increased risk of cardiovascular events and death in diabetic patients. Diabetologia 59:2321–2330.https://doi.org/10.1007/s00125-016-4066-5
González JR, López-Sánchez M, Cáceres A, Puig P, Esko T, Pérez-Jurado LA (2019) A robust estimation of mosaic loss of chromosome Y from genotype-array-intensity data to improve disease risk associations and transcriptional effects. bioRxiv.https://doi.org/10.1101/764845
Graham EJ, Vermeulen M, Vardarajan B, Bennet D, De Jager P, Pearse RV, Young-Pearse TL, Mostafavi S (2019) Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res.https://doi.org/10.1016/j.brainres.2019.146345
Grassmann F, Kiel C, Hollander AI, Weeks DE, Lotery A, Cipriani V, Weber BHF, on behalf of the International Age-related Macular Degeneration Genomics Consortium (2019a) Y chromosome mosaicism is associated with age-related macular degeneration. Eur J Hum Genet 27:36–41.https://doi.org/10.1038/s41431-018-0238-8
Grassmann F, International AMD Genomics Consortium (IAMDGC), Weber BHF, Veitia RA (2019b) Insights into the loss of the Y chromosome with age in control individuals and in patients with age-related macular degeneration using genotyping microarray data. Hum Genet.https://doi.org/10.1007/s00439-00019-02029-00431
Guo X, Wang X (2016)Phyllanthus emblica fruit extract activates spindle assembly checkpoint, prevents mitotic aberrations and genomic instability in human colon epithelial NCM460 cells. Int J Mol Sci 17:1437.https://doi.org/10.3390/ijms17091437
Guo X, Ni J, Zhu Y, Zhou T, Ma X, Xue J, Wang X (2017) Folate deficiency induces mitotic aberrations and chromosomal instability by compromising the spindle assembly checkpoint in cultured human colon cells. Mutagenesis 32:547–560.https://doi.org/10.1093/mutage/gex030
Guo X, Ni J, Dai X, Zhou T, Yang G, Xue J, Wang X (2018a) Biphasic regulation of spindle assembly checkpoint by low and high concentrations of resveratrol leads to the opposite effect on chromosomal instability. Mutat Res Genet Toxicol Environ Mutagen 825:19–30.https://doi.org/10.1016/j.mrgentox.2017.11.004
Guo X, Wang H, Ni J, Liang Z, Wu X, Xue J, Wang X (2018b) Geraniin selectively promotes cytostasis and apoptosis in human colorectal cancer cells by inducing catastrophic chromosomal instability. Mutagenesis 33:271–281.https://doi.org/10.1093/mutage/gey016
Guo X, Dai X, Ni J, Cao N, Yang G, Xue J, Wang X (2019a) High concentration of sugars is genotoxic to folate-deficient cells. Mutat Res Fundam Mol Mech Mutagen 814:15–22.https://doi.org/10.1016/j.mrfmmm.2019.01.003
Guo X, Dai X, Ni J, Ma X, Xue J, Wang X (2019b) Geraniin differentially modulates chromosome stability of colon cancer and noncancerous cells by oppositely regulating their spindle assembly checkpoint. Environ Mol Mutagen 60:254–268.https://doi.org/10.1002/em.22265
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X (2019c) The molecular origins and pathophysiological consequences of micronuclei: new insights into an age-old problem. Mutat Res Rev Mutat Res 779:1–35.https://doi.org/10.1016/j.mrrev.2018.11.001
Guttenbach M, Koschorz B, Bernthaler U, Grimm T, Schmid M (1995) Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei. Am J Hum Genet 57:1143–1150
Haitjema S, Kofink D, van Setten J, van der Laan SW, Schoneveld AH, Eales J, Tomaszewski M, de Jager SCA, Pasterkamp G, Asselbergs FW, den Ruijter HM (2017) Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ Cardiovasc Genet 10:e001544.https://doi.org/10.1161/circgenetics.116.001544
Hando JC, Tucker JD, Davenport M, Tepperberg J, Nath J (1997) X chromosome inactivation and micronuclei in normal and Turner individuals. Hum Genet 100:624–628.https://doi.org/10.1007/s004390050564
He B, Gnawali N, Hinman AW, Mattingly AJ, Osimani A, Cimini D (2019) Chromosomes missegregated into micronuclei contribute to chromosomal instability by missegregating at the next division. Oncotarget 10:2660–2674.https://doi.org/10.18632/oncotarget.26853
Helgason A, Einarsson AW, Guðmundsdóttir VB, Sigurðsson Á, Gunnarsdóttir ED, Jagadeesan A, Ebenesersdóttir SS, Kong A, Stefánsson K (2015) The Y-chromosome point mutation rate in humans. Nat Genet 47:453–457.https://doi.org/10.1038/ng.3171
Hirata T, Hishimoto A, Otsuka I, Okazaki S, Boku S, Kimura A, Horai T, Sora I (2018) Investigation of chromosome Y loss in men with schizophrenia. Neuropsychiatr Dis Treat 14:2115–2122.https://doi.org/10.2147/NDT.S172886
Hollows R, Wei W, Cazier J-B, Mehanna H, Parry G, Halford G, Murray P (2019) Association between loss of Y chromosome and poor prognosis in male head and neck squamous cell carcinoma. Head Neck 41:993–1006.https://doi.org/10.1002/hed.25537
Hsu LY (1994) Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am J Med Genet 53:108–140.https://doi.org/10.1002/ajmg.1320530204
Jacobs PA, Brunton M, Court Brown WM, Doll R, Goldstein H (1963) Change of human chromosome count distributions with age: evidence for a sex difference. Nature 197:1080–1081.https://doi.org/10.1038/1971080a0
Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner M-J, Cullen M, Epstein CG, Burdett L, Dean MC, Chatterjee N et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658.https://doi.org/10.1038/ng.2270
Jahanshad N, Rajagopalan P, Hua X, Hibar DP, Nir TM, Toga AW, Jack CR, Saykin AJ, Green RC, Weiner MW, Medland SE, Montgomery GW, Hansell NK, McMahon KL, de Zubicaray GI et al (2013) Genome-wide scan of healthy human connectome discoversSPON1 gene variant influencing dementia severity. Proc Natl Acad Sci USA 110:4768.https://doi.org/10.1073/pnas.1216206110
Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV, Paten B, Haussler D, Willard HF, Akeson M, Miga KH (2018) Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol 36:321–323.https://doi.org/10.1038/nbt.4109
Jangravi Z, Tabar MS, Mirzaei M, Parsamatin P, Vakilian H, Alikhani M, Shabani M, Haynes PA, Goodchild AK, Gourabi H, Baharvand H, Salekdeh GH (2015) Two splice variants of Y chromosome-located lysine-specific demethylase 5D have distinct function in prostate cancer cell line (DU-145). J Proteome Res 14:3492–3502.https://doi.org/10.1021/acs.jproteome.5b00333
Jobling MA, Tyler-Smith C (2003) The human Y chromosome: an evolutionary marker comes of age. Nat Rev Genet 4:598–612.https://doi.org/10.1038/nrg1124
Jobling MA, Tyler-Smith C (2017) Human Y-chromosome variation in the genome-sequencing era. Nat Rev Genet 18:485–497.https://doi.org/10.1038/nrg.2017.36
Kander MC, Cui Y, Liu Z (2017) Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med 21:1024–1032.https://doi.org/10.1111/jcmm.13038
Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37:278–316.https://doi.org/10.1210/er.2015-1137
Kimura A, Hishimoto A, Otsuka I, Okazaki S, Boku S, Horai T, Izumi T, Takahashi M, Ueno Y, Shirakawa O (2018) Loss of chromosome Y in blood, but not in brain, of suicide completers. PLoS ONE 13:e0190667.https://doi.org/10.1371/journal.pone.0190667
Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638.https://doi.org/10.1038/nri.2016.90
Lai IL, Chang Y-S, Chan W-L, Lee Y-T, Yen J-C, Yang C-A, Hung S-Y, Chang J-G (2019) Male-specific long noncoding RNA TTTY15 inhibits non-small cell lung cancer proliferation and metastasis via TBX4. Int J Mol Sci.https://doi.org/10.3390/ijms20143473
Lange J, Skaletsky H, van Daalen SK, Embry SL, Korver CM, Brown LG, Oates RD, Silber S, Repping S, Page DC (2009) Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138:855–869.https://doi.org/10.1016/j.cell.2009.07.042
Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691.https://doi.org/10.1093/hmg/5.5.685
Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C, Wei Q, Wang L-E, Lee JE, Barnes KC, Hansel NN et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650.https://doi.org/10.1038/ng.2271
Lee J, Pinares-Garcia P, Loke H, Ham S, Vilain E, Harley VR (2019) Sex-specific neuroprotection by inhibition of the Y-chromosome gene,SRY, in experimental Parkinson’s disease. Proc Natl Acad Sci USA 116:16577.https://doi.org/10.1073/pnas.1900406116
Liu Y, Bai Y, Wu X, Li G, Wei W, Fu W, Wang G, Feng Y, Meng H, Li H, Li M, Guan X, Zhang X, He M, Wu T et al (2019) Polycyclic aromatic hydrocarbons exposure and their joint effects with age, smoking, and TCL1A variants on mosaic loss of chromosome Y among coke-oven workers. Environ Pollut.https://doi.org/10.1016/j.envpol.2019.113655
Lleo A, Oertelt-Prigione S, Bianchi I, Caliari L, Finelli P, Miozzo M, Lazzari R, Floreani A, Donato F, Colombo M, Gershwin ME, Podda M, Invernizzi P (2013) Y chromosome loss in male patients with primary biliary cirrhosis. J Autoimmun 41:87–91.https://doi.org/10.1016/j.jaut.2012.12.008
Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, Sherman MA, Vitzthum CM, Luquette LJ, Yandava CN, Yang P, Chittenden TW, Hatem NE, Ryu SC, Woodworth MB et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–559.https://doi.org/10.1126/science.aao4426
Loftfield E, Zhou W, Graubard BI, Yeager M, Chanock SJ, Freedman ND, Machiela MJ (2018) Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci Rep 8:12316.https://doi.org/10.1038/s41598-018-30759-1
Loftfield E, Zhou W, Yeager M, Chanock SJ, Freedman ND, Machiela MJ (2019) Mosaic Y loss is moderately associated with solid tumor risk. Cancer Res 79:461–466.https://doi.org/10.1158/0008-5472.CAN-18-2566
Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, Birmann BM, Talkowski ME, Bakhoum SF, McCarroll SA, Price AL (2018) Insights into clonal haematopoiesis from 8342 mosaic chromosomal alterations. Nature 559:350–355.https://doi.org/10.1038/s41586-018-0321-x
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217.https://doi.org/10.1016/j.cell.2013.05.039
Lund JB, Li S, Christensen K, Mengel-From J, Soerensen M, Marioni RE, Starr J, Pattie A, Deary IJ, Baumbach J (2019) Age-dependent DNA methylation patterns on the Y chromosome in elderly males. Aging Cell 18:e12907.https://doi.org/10.1111/acel.12907
Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H, Fachinetti D, Page DC, Cleveland DW (2017) Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 19:68–75.https://doi.org/10.1038/ncb3450
Ly P, Brunner SF, Shoshani O, Kim DH, Lan W, Pyntikova T, Flanagan AM, Behjati S, Page DC, Campbell PJ, Cleveland DW (2019) Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat Genet 51:705–715.https://doi.org/10.1038/s41588-019-0360-8
Maan AA, Eales J, Akbarov A, Rowland J, Xu X, Jobling MA, Charchar FJ, Tomaszewski M (2017) The Y chromosome: a blueprint for men’s health? Eur J Hum Genet 25:1181–1188.https://doi.org/10.1038/ejhg.2017.128
Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, Hicks B, Dagnall C, Hautman C, Jacobs KB, Abnet CC, Aldrich MC, Amos C, Amundadottir LT, Arslan AA et al (2016) Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun 7:11843.https://doi.org/10.1038/ncomms11843
Machiela MJ, Dagnall CL, Pathak A, Loud JT, Chanock SJ, Greene MH, McGlynn KA, Stewart DR (2017) Mosaic chromosome Y loss and testicular germ cell tumor risk. J Hum Genet 62:637–640.https://doi.org/10.1038/jhg.2017.20
Machiela MJ, Zhou W, Sampson JN, Dean MC, Jacobs KB, Black A, Brinton LA, Chang IS, Chen C, Chen C, Chen K, Cook LS, Crous BM, De VI, Doherty J et al (2015) Characterization of large structural genetic mosaicism in human autosomes. Am J Hum Genet 96:487–497.https://doi.org/10.1016/j.ajhg.2015.01.011
Martens UM, Zijlmans JMJ, Poon SS, Dragowska W, Yui J, Chavez EA, Ward RK, Lansdorp PM (1998) Short telomeres on human chromosome 17p. Nat Genet 18:76–80.https://doi.org/10.1038/ng0198-76
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer's disease. Nat Rev Dis Primers 1:15056.https://doi.org/10.1038/nrdp.2015.56
Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T, Murphy N, Hupé P, Barillot E, Belmont AS, Heard E (2011) Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145:447–458.https://doi.org/10.1016/j.cell.2011.03.032
Mendivil-Perez M, Velez-Pardo C, Kosik KS, Lopera F, Jimenez-Del-Rio M (2019) iPSCs-derived nerve-like cells from familial Alzheimer’s disease PSEN 1 E280A reveal increased amyloid-beta levels and loss of the Y chromosome. Neurosci Lett 703:111–118.https://doi.org/10.1016/j.neulet.2019.03.032
Meyfour A, Ansari H, Pahlavan S, Mirshahvaladi S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH (2017a) Y chromosome missing protein, TBL1Y, may play an important role in cardiac differentiation. J Proteome Res 16:4391–4402.https://doi.org/10.1021/acs.jproteome.7b00391
Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH (2017b) Chromosome-centric human proteome project allies with developmental biology: a case study of the role of Y chromosome genes in organ development. J Proteome Res 16:4259–4272.https://doi.org/10.1021/acs.jproteome.7b00446
Miyado M, Muroya K, Katsumi M, Saito K, Kon M, Fukami M (2018) Somatically acquired isodicentric Y and mosaic loss of chromosome Y in a boy with hypospadias. Cytogenet Genome Res 154:122–125.https://doi.org/10.1159/000488162
Molina E, Chew GS, Myers SA, Clarence EM, Eales JM, Tomaszewski M, Charchar FJ (2017) A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes. Sci Rep 7:16710.https://doi.org/10.1038/s41598-017-17165-9
Murakami S, Chishima S, Uemoto H, Sakamoto E, Sato T, Kurabe N, Kawasaki Y, Shibata T, Akiyama H, Tashiro F (2014) The male-specific factor Sry harbors an oncogenic function. Oncogene 33:2978–2986.https://doi.org/10.1038/onc.2013.262
Mužinić V, Ramić S, Želježić D (2019) Chromosome missegregation and aneuploidy induction in human peripheral blood lymphocytes in vitro by low concentrations of chlorpyrifos, imidacloprid and α-cypermethrin. Environ Mol Mutagen 60:72–84.https://doi.org/10.1002/em.22235
Nath J, Tucker JD, Hando JC (1995) Y Chromosome aneuploidy, micronuclei, kinetochores and aging in men. Chromosoma 103:725–731.https://doi.org/10.1007/bf00344234
Ni J, Guo X, Wang H, Zhou T, Wang X (2018) Differences in the effects of EGCG on chromosomal stability and cell growth between normal and colon cancer cells. Molecules.https://doi.org/10.3390/molecules23040788
Noveski P, Madjunkova S, Sukarova Stefanovska E, Matevska Geshkovska N, Kuzmanovska M, Dimovski A, Plaseska-Karanfilska D (2016) Loss of Y chromosome in peripheral blood of colorectal and prostate cancer patients. PLoS ONE 11:e0146264.https://doi.org/10.1371/journal.pone.0146264
Pampalona J, Soler D, Genescà A, Tusell L (2010) Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosomes Cancer 49:368–378.https://doi.org/10.1002/gcc.20749
Patsalis PC, Skordis N, Sismani C, Kousoulidou L, Koumbaris G, Eftychi C, Stavrides G, Ioulianos A, Kitsiou-Tzeli S, Galla-Voumvouraki A, Kosmaidou Z, Hadjiathanasiou CG, McElreavey K (2005) Identification of high frequency of Y chromosome deletions in patients with sex chromosome mosaicism and correlation with the clinical phenotype and Y-chromosome instability. Am J Med Genet A 135A:145–149.https://doi.org/10.1002/ajmg.a.30712
Persani L, Bonomi M, Lleo A, Pasini S, Civardi F, Bianchi I, Campi I, Finelli P, Miozzo M, Castronovo C, Sirchia S, Gershwin ME, Invernizzi P (2012) Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J Autoimmun 38:J193–J196.https://doi.org/10.1016/j.jaut.2011.11.011
Pierre RV, Hoagland HC (1972) Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer 30:889–894.https://doi.org/10.1002/1097-0142(197210)30:4%3c889:AID-CNCR2820300405%3e3.0.CO;2-1
Qin N, Li N, Wang C, Pu Z, Ma Z, Jin G, Zhu M, Dai M, Hu Z, Ma H, Shen H (2019) Association of mosaic loss of chromosome Y with lung cancer risk and prognosis in a Chinese population. J Thorac Oncol 14:37–44.https://doi.org/10.1016/j.jtho.2018.09.013
Repping S, van Daalen SKM, Brown LG, Korver CM, Lange J, Marszalek JD, Pyntikova T, van der Veen F, Skaletsky H, Page DC, Rozen S (2006) High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 38:463–467.https://doi.org/10.1038/ng1754
Rutledge SD, Douglas TA, Nicholson JM, Vila-Casadesús M, Kantzler CL, Wangsa D, Barroso-Vilares M, Kale SD, Logarinho E, Cimini D (2016) Selective advantage of trisomic human cells cultured in non-standard conditions. Sci Rep 6:22828.https://doi.org/10.1038/srep22828
Senovilla L, Galluzzi L, Zitvogel L, Kroemer G (2013) Immunosurveillance as a regulator of tissue homeostasis. Trends Immunol 34:471–481.https://doi.org/10.1016/j.it.2013.06.005
Sheltzer JM, Amon A (2011) The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 27:446–453.https://doi.org/10.1016/j.tig.2011.07.003
Sheltzer JM, Ko JH, Replogle JM, Habibe Burgos NC, Chung ES, Meehl CM, Sayles NM, Passerini V, Storchova Z, Amon A (2017) Single-chromosome gains common function as tumor suppressors. Cancer Cell 31:240–255.https://doi.org/10.1016/j.ccell.2016.12.004
Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, Bergström A, Gu Y, Leonard S, Quail MA, Ayub Q, Yang F, Tyler-Smith C, Xue Y (2018) Copy number variation arising from gene conversion on the human Y chromosome. Hum Genet 137:73–83.https://doi.org/10.1007/s00439-017-1857-9
Siffroi JP, Le Bourhis C, Krausz C, Barbaux S, Quintana-Murci L, Kanafani S, Rouba H, Bujan L, Bourrouillou G, Seifer I (2000) Sex chromosome mosaicism in males carrying Y chromosome long arm deletions. Hum Reprod 15:2559–2562.https://doi.org/10.1093/humrep/15.12.2559
Skowyra A, Allan LA, Saurin AT, Clarke PR (2018) USP9X limits mitotic checkpoint complex turnover to strengthen the spindle assembly checkpoint and guard against chromosomal instability. Cell Rep 23:852–865.https://doi.org/10.1016/j.celrep.2018.03.100
Soto M, García-Santisteban I, Krenning L, Medema RH, Raaijmakers JA (2018) Chromosomes trapped in micronuclei are liable to segregation errors. J Cell Sci 131:jcs214742.https://doi.org/10.1242/jcs.214742
Surrallés J, Hande MP, Marcos R, Lansdorp PM (1999) Accelerated telomere shortening in the human inactive X chromosome. Am J Hum Genet 65:1617–1622.https://doi.org/10.1086/302665
Tacconi EMC, Tarsounas M (2015) How homologous recombination maintains telomere integrity. Chromosoma 124:119–130.https://doi.org/10.1007/s00412-014-0497-2
Taleahmad S, Alikhani M, Mollamohammadi S, Yousefi M, Taei A, Hassani SN, Baharvand H, Salekdeh GH (2019) Inhibition of human Y chromosome gene, SRY, promotes naïve state of human pluripotent stem cells. J Proteome Res.https://doi.org/10.1021/acs.jproteome.9b00396
Tang D, Han Y, Lun Y, Jiang H, Xin S, Duan Z, Zhang J (2019) Y chromosome loss is associated with age-related male patients with abdominal aortic aneurysms. Clin Interv Aging 14:1227–1241.https://doi.org/10.2147/cia.s202188
Terao C, Momozawa Y, Ishigaki K, Kawakami E, Akiyama M, Loh P-R, Genovese G, Sugishita H, Ohta T, Hirata M, Perry JRB, Matsuda K, Murakami Y, Kubo M, Kamatani Y (2019a) GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nat Commun 10:4719.https://doi.org/10.1038/s41467-019-12705-5
Terao C, Suzuki A, Momozawa Y, Akiyama M, Ishigaki K, Yamamoto K, Matsuda K, Murakami Y, McCarroll SA, Kubo M, Loh P-R, Kamatani Y (2019b) The genomic landscape of clonal hematopoiesis in Japan. bioRxiv.https://doi.org/10.1101/653733
Thompson DJ, Genovese G, Halvardson J, Ulirsch JC, Wright DJ, Terao C, Davidsson OB, Day FR, Sulem P, Jiang Y, Danielsson M, Davies H, Dennis J, Dunlop MG, Easton DF et al (2019) Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575:652–657.https://doi.org/10.1038/s41586-019-1765-3
Tian Z, Miyata K, Kadomatsu T, Horiguchi H, Fukushima H, Tohyama S, Ujihara Y, Okumura T, Yamaguchi S, Zhao J, Endo M, Morinaga J, Sato M, Sugizaki T, Zhu S et al (2016) ANGPTL2 activity in cardiac pathologies accelerates heart failure by perturbing cardiac function and energy metabolism. Nat Commun 7:13016.https://doi.org/10.1038/ncomms13016
Trombetta B, Cruciani F (2017) Y chromosome palindromes and gene conversion. Hum Genet 136:605–619.https://doi.org/10.1007/s00439-017-1777-8
Tuveson D, Clevers H (2019) Cancer modeling meets human organoid technology. Science 364:952–955.https://doi.org/10.1126/science.aaw6985
UKCCG (1992) Loss of the Y chromosome from normal and neoplastic bone marrows. Genes Chromosomes Cancer 5:83–88.https://doi.org/10.1002/gcc.2870050112
Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DPK, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbæk A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102.https://doi.org/10.1038/ng.208
Vakilian H, Mirzaei M, Sharifi Tabar M, Pooyan P, Habibi Rezaee L, Parker L, Haynes PA, Gourabi H, Baharvand H, Salekdeh GH (2015) DDX3Y, a male-specific region of Y chromosome gene, may modulate neuronal differentiation. J Proteome Res 14:3474–3483.https://doi.org/10.1021/acs.jproteome.5b00512
Vasudevan A, Baruah PS, Smith JC, Wang Z, Sayles NM, Andrews P, Kendall J, Chunduri NK, Levy D, Wigler M, Storchová Z, Sheltzer JM (2019) Single chromosome gains can function as metastasis suppressors and metastasis promoters. bioRxiv.https://doi.org/10.1101/590547
Vázquez-Diez C, Yamagata K, Trivedi S, Haverfield J, FitzHarris G (2016) Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc Natl Acad Sci USA 113:626–631.https://doi.org/10.1073/pnas.1517628112
Vig BK (1984) Sequence of centromere separation another mechanism for the origin of nondisjunction. Hum Genet 66:239–243.https://doi.org/10.1007/bf00286609
Vijayakumar S, Garcia D, Hensel CH, Banerjee M, Bracht T, Xiang R, Kagan J, Naylor SL (2005) The human Y chromosome suppresses the tumorigenicity of PC-3, a human prostate cancer cell line, in athymic nude mice. Genes Chromosomes Cancer 44:365–372.https://doi.org/10.1002/gcc.20250
Weaver BA, Cleveland DW (2008) The aneuploidy paradox in cell growth and tumorigenesis. Cancer Cell 14:431–433.https://doi.org/10.1016/j.ccr.2008.11.011
Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709.https://doi.org/10.1126/science.1160058
Wong HY, Wang GM, Croessmann S, Zabransky DJ, Chu D, Garay JP, Cidado J, Cochran RL, Beaver JA, Aggarwal A, Liu M-L, Argani P, Meeker A, Hurley PJ, Lauring J et al (2015) TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget 6:44927–44940.https://doi.org/10.18632/oncotarget.6743
Wong JYY, Margolis HG, Machiela M, Zhou W, Odden MC, Psaty BM, Robbins J, Jones RR, Rotter JI, Chanock SJ, Rothman N, Lan Q, Lee JS (2018) Outdoor air pollution and mosaic loss of chromosome Y in older men from the cardiovascular health study. Environ Int 116:239–247.https://doi.org/10.1016/j.envint.2018.04.030
Wright DJ, Day FR, Kerrison ND, Zink F, Cardona A, Sulem P, Thompson DJ, Sigurjonsdottir S, Gudbjartsson DF, Helgason A, Chapman JR, Jackson SP, Langenberg C, Wareham NJ, Scott RA et al (2017) Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nat Genet 49:674–679.https://doi.org/10.1038/ng.3821
Xia Y, Zhu K, Irianto J, Andrechak JC, Dooling LJ, Pfeifer CR, Discher DE (2018) Live cell monitoring for factors affecting genome variation. bioRxiv.https://doi.org/10.1101/508150
Xiao G, Yao J, Kong D, Ye C, Chen R, Li L, Zeng T, Wang L, Zhang W, Shi X, Zhou T, Li J, Wang Y, Xu CL, Jiang J et al (2018) The long noncoding RNA TTTY15, which is located on the Y chromosome, promotes prostate cancer progression by sponging let-7. Eur Urol 76:315–326.https://doi.org/10.1016/j.eururo.2018.11.012
Xu J, Peng X, Chen Y, Zhang Y, Ma Q, Liang L, Carter AC, Lu X, Wu C-I (2017) Free-living human cells reconfigure their chromosomes in the evolution back to uni-cellularity. eLife 6:e28070.https://doi.org/10.7554/eLife.28070
Xue Y, Tyler-Smith C (2017) Past successes and future opportunities for the genetics of the human Y chromosome. Hum Genet 136:481–483.https://doi.org/10.1007/s00439-017-1806-7
Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, Yengo L, Lloyd-Jones LR, Sidorenko J, Wu Y (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 9:2941.https://doi.org/10.1038/s41467-018-04951-w
Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 15:501–518.https://doi.org/10.1038/s41582-019-0228-7
Yan L, Cogan JD, Hedges LK, Nunley B, Hamid R, Austin ED (2018) The Y chromosome regulates BMPR2 expression via SRY: a possible reason “why” fewer males develop pulmonary arterial hypertension. Am J Respir Crit Care Med 198:1581–1583.https://doi.org/10.1164/rccm.201802-0308LE
Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang H-Y, Tanahashi T, Nakamura N et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092–1097.https://doi.org/10.1038/ng.207
Zhou W, Machiela MJ, Freedman ND, Rothman N, Malats N, Dagnall C, Caporaso N, Teras LT, Gaudet MM, Gapstur SM, Stevens VL, Jacobs KB, Sampson J, Albanes D, Weinstein S et al (2016) Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat Genet 48:563–568.https://doi.org/10.1038/ng.3545
Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, Thorgeirsson TE, Sigurdsson A, Gudjonsson SA, Gudmundsson J, Jonasson JG, Tryggvadottir L, Jonsson T, Helgason A, Gylfason A et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752.https://doi.org/10.1182/blood-2017-02-769869
Zuo E, Huo X, Yao X, Hu X, Sun Y, Yin J, He B, Wang X, Shi L, Ping J (2017) CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol 18:224.https://doi.org/10.1186/s13059-017-1354-4
Acknowledgements
We thank the anonymous reviewers for helpful comments and suggestions. We apologize to our colleagues whose work we were unable to include because of space restrictions. This work was funded by the National Natural Science Foundation of China (Project no. 31860301 to X.W. and 31900410 to X.G.).
Author information
Xihan Guo and Xueqin Dai contributed equally to this work.
Authors and Affiliations
School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
Xihan Guo, Tao Zhou, Han Wang, Juan Ni & Xu Wang
Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
Xueqin Dai
Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
Xueqin Dai
Yeda Institute of Gene and Cell Therapy, Taizhou, 318000, Zhejiang, China
Jinglun Xue
- Xihan Guo
You can also search for this author inPubMed Google Scholar
- Xueqin Dai
You can also search for this author inPubMed Google Scholar
- Tao Zhou
You can also search for this author inPubMed Google Scholar
- Han Wang
You can also search for this author inPubMed Google Scholar
- Juan Ni
You can also search for this author inPubMed Google Scholar
- Jinglun Xue
You can also search for this author inPubMed Google Scholar
- Xu Wang
You can also search for this author inPubMed Google Scholar
Contributions
XG contributed towards the design and structure of the manuscript. XG and XD reviewed the literature, designed the figures and drafted the manuscript, TZ, HW and JN contributed to the discussion. JX and XW contributed to editing. All authors read and approve the final manuscript.
Corresponding author
Correspondence toXu Wang.
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guo, X., Dai, X., Zhou, T.et al. Mosaic loss of human Y chromosome: what, how and why.Hum Genet139, 421–446 (2020). https://doi.org/10.1007/s00439-020-02114-w
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative