- Melanie L. Hand1,4,
- Rebecca C. Ponting1,4,
- Michelle C. Drayton1,4,
- Kahlil A. Lawless1,4,
- Noel O. I. Cogan1,4,
- E. Charles Brummer2,
- Timothy I. Sawbridge1,4,
- German C. Spangenberg1,4,
- Kevin F. Smith3,4 &
- …
- John W. Forster1,4
661Accesses
6Altmetric
Abstract
The combination of homologous, homoeologous and paralogous classes of sequence variation presents major challenges for SNP discovery in outbreeding allopolyploid species. Previous in vitro gene-associated SNP discovery studies in the allotetraploid forage legume white clover (Trifolium repens L.) were vulnerable to such effects, leading to prohibitive levels of attrition during SNP validation. Identification ofT. occidentale andT. pallescens as the putative diploid progenitors of white clover has permitted discrimination of the different sequence variant categories. Amplicons from selected abiotic stress tolerance-related genes were obtained using mapping family parents and individuals from each diploid species. Following cloning, progenitor comparison allowed tentative assignment of individual haplotypes to one or other sub-genome, as well as to gene copies within sub-genomes. A high degree of coincidence and identity between SNPs and HSVs was observed. Close similarity was observed between the genome ofT. occidentale and one white clover sub-genome, but the affinity betweenT. pallescens and the other sub-genome was weaker, suggesting that a currently uncharacterised taxon may be the true second progenitor. Selected validated SNPs were attributed to individual sub-genomes by assignment to and naming of homoeologous linkage groups, providing the basis for improved genetic trait-dissection studies. The approach described in this study is broadly applicable to a range of allopolyploid taxa of equivocal ancestry.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.




Similar content being viewed by others

Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plantBrassica napus
References
Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Nat Acad Sci USA 100:4649–4654
Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560
Badr A, Sayed-Ahmed H, El-Shanshouri A, Watson LE (2002) Ancestors of white clover (Trifolium repens L.), as revealed by isozyme polymorphisms. Theor Appl Genet 106:143–148
Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover (Trifolium repens L.). Theor Appl Genet 109:596–608
Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198
Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo M-C, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947
Chen CC, Gibson PB (1970) Chromosome pairing in two interspecific hybrids ofTrifolium. Can J Genet Cytol 12:790–794
Chen CC, Gibson PB (1971) Karyotypes of fifteenTrifolium species in section Amoria. Crop Sci 11:441–445
Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007)GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305
Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2006) Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genom 276:101–112
Cogan NOI, Drayton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2007) Validation of in silico-predicted genic single nucleotide polymorphism in white clover (Trifolium repens L.). Mol Genet Genom 277:413–425
Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots inEscherichia coli. Nature 274:775–780
Cronn RC, Wendel JF (1998) Simple methods for isolating homoeologous loci from allopolyploid genomes. Genome 41:756–762
Dobrowolski MP, Forster JW (2007) Chapter 9: Linkage disequilibrium-based association mapping in forage species. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 197–209
Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219
Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007) Chapter 4: Single nucleotide polymorphism discovery in plants. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 53–76
Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol Phylogenet Evol 39:688–705
Erwin TA, Jewell EG, Love CG, Lim GAC, Li X, Chapman R, Batley J, Stajich JE, Mongin E, Stupka ER, Spangenberg G, Edwards D (2007) BASC: an integrated bioinformatics system forBrassica research. Nucl Acids Res 35:870–873
Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally-associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32
Forster JW, Jones ES, Batley J, Smith KF (2004) Molecular marker-based genetic analysis of pasture and turf grasses. In: Hopkins A, Wang Z-Y, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer Academic Press, Dordrecht, pp 197–239
Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, Smith KF (2008) Functionally-associated molecular genetic markers for temperate pasture plant improvement. In: Henry RJ (ed) Plant genotyping II: SNP technology. CABI Press, Wallingford, pp 154–187
Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, Brookes AJ (2004) Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 36:861–866
Frugier F, Poirier S, Satiat-Jeunemaître B, Kondorosi A, Crespi M (2000) AKrüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev 14:475–482
George J, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2006a) Genetic map integration and comparative genome organisation of white clover (Trifolium repens L.) with model legume species. Plant and Animal Genome XIV, San Diego, pp 542
George J, Dobrowolski MP, de Jong E, Cogan NOI, Smith KF, Forster JW (2006b) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by simple sequence repeat polymorphism. Genome 49:919–930
Griffiths A, Barrett B, Simon D, Anderson C, Somerville D, Lawn J, Warren J, Khan A, Jones C (2007) A consensus map of white clover with in silico alignment toMedicago indicates a translocation. Proc Fifth Intl Symp Molecular Breeding of Forage and Turf, Sapporo July 2007, pp 115
Huang B, Liu JY (2006) A cotton dehydration-responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem Biophys Res Commun 343:1023–1031
Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiére M (1995) Discriminating the ancestral progenitors of hexaploidFestuca arundinacea using genomic in situ hybridisation. Heredity 75:171–174
Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002)Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450
Jones ES, Hughes LJ, Drayton MC, Abberton MT, Michaelson-Yeates TPT, Forster JW (2003) An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.). Plant Sci 165:531–539
Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424
Lawless KA, Drayton MC, Hand MC, Ponting RC, Cogan NOI, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW. (2008) Interpretation of SNP haplotype complexity in white clover (Trifolium repens L.), an outbreeding allotetraploid species, Chap 19. In: Yamada T, Spangenberg G (eds) Molecular Breeding of Forage and Turf: The Proceedings of the 5th International Symposium on the Molecular Breeding of Forage and Turf. Springer, New York (in press)
Lu CM, Yang WY, Zhang WJ, Lu B-R (2005) Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunitDtx1.5 fromAegilopstauschii through sequence characterisation. J Cereal Sci 41:13–18
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380
Merchan F, Breda C, Perez Hormaeche J, Sousa C, Kondorosi A, Aguilar OM, Megias M, Crespi M (2003) AKrüppel-lke transcription factor gene is involved in salt stress responses inMedicago spp. Plant and Soil 257:1–9
Michaelson-Yeates TPT, Marshall A, Abberton MT, Rhodes I (1997) Self-incompatibility and heterosis in white clover (Trifolium repens L.). Euphytica 94:341–348
Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families inArabidopsis thaliana. Mol Biol Evol 22:2444–2456
Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Op Plant Biol 8:122–128
Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of twoArabidopsisDREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665
Ogihara Y, Hasegawa K, Tsuijimoto H (1994) High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes ofAegilops speltoides. Mol Genet Genom 244:253–259
Olsen KM, Sutherland BL, Small LL (2007) Molecular evolution of theLi/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol Ecol 16:4180–4193
Ponting RC, Drayton MD, Cogan NOI, Dobrowolski MP, Smith KF, Spangenberg GC, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genom 278:589–597
Rickert A, Premstaller A, Gebhardt C, Oefner PJ (2002) Genotyping of SNPs in a polyploidy genome by pyrosequencing. BioTechniques 32:592–603
Robertson M, Chandler PM (1994) A dehydrin-cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol Biol 26:805–816
Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression inCicer arietinum seedlings and plants. Plant Physiol Biochem 39:1017–1026
Ross P, Hall L, Haff LA (2000) Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. BioTechniques 29: 620–6, 628–629
Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398
Sawbridge T, Ong E-K, Binnion C, Emmerling M, Meath K, Nunan K, O’Neill M, O’Toole F, Simmonds J, Wearne K, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in white clover (Trifolium repens L.). Plant Sci 165:1077–1087
Senanayake YDA, Bringhurst RS (1967) Origin ofFragaria polyploids. I. Cytological analysis. Am J Bot 54:221–228
Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends Plant Sci 9:441–448
Small RL, Wendel JF (2000) Copy number lability and evolutionary dynamics of theAdh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155:1913–1926
Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437
Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697
Spangenberg GC, Forster JW, Edwards D, John U, Mouradov A, Emmerling M, Batley J, Felitti S, Cogan NOI, Smith KF, Dobrowolski MP (2005) Future directions in the molecular breeding of forage and turf. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Netherlands, pp 83–97
Tombolato DCM, Zhang K, Davis TM, Folta Km (2008) Implementation of gene pair haplotypes provides evidence of the subgenome composition of cultivated strawberry (Fragaria × ananassa). Plant and Animal Genome XVI, San Diego, January 2008, pp 666
Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420
Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249
Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120–1128
Zhang Y, Sledge MK, Bouton JH (2007) Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet 114:1367–1378
Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134
Acknowledgments
This work was supported by funding from the Victorian Department of Primary Industries, Dairy Australia Ltd., the Geoffrey Gardiner Dairy Foundation, Meat and Livestock Australia Ltd. and the Molecular Plant Breeding Cooperative Research Centre (MPB CRC). The authors thank Dr. Nick Ellison (AgResearch New Zealand) for provision ofT. pallescens genomic DNA and both Dr. Ross Chapman and Prof. Michael Hayward for careful critical reading of the manuscript.
Author information
Authors and Affiliations
Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe Research and Development Park, Bundoora, Victoria, 3083, Australia
Melanie L. Hand, Rebecca C. Ponting, Michelle C. Drayton, Kahlil A. Lawless, Noel O. I. Cogan, Timothy I. Sawbridge, German C. Spangenberg & John W. Forster
Centre for Applied Genetic Technologies, Crop and Soil Science Department, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
E. Charles Brummer
Department of Primary Industries, Biosciences Research Division, Hamilton Centre, Mount Napier Road, Hamilton, Victoria, 3330, Australia
Kevin F. Smith
Molecular Plant Breeding Cooperative Research Centre, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe Research and Development Park, Bundoora, Victoria, 3083, Australia
Melanie L. Hand, Rebecca C. Ponting, Michelle C. Drayton, Kahlil A. Lawless, Noel O. I. Cogan, Timothy I. Sawbridge, German C. Spangenberg, Kevin F. Smith & John W. Forster
- Melanie L. Hand
You can also search for this author inPubMed Google Scholar
- Rebecca C. Ponting
You can also search for this author inPubMed Google Scholar
- Michelle C. Drayton
You can also search for this author inPubMed Google Scholar
- Kahlil A. Lawless
You can also search for this author inPubMed Google Scholar
- Noel O. I. Cogan
You can also search for this author inPubMed Google Scholar
- E. Charles Brummer
You can also search for this author inPubMed Google Scholar
- Timothy I. Sawbridge
You can also search for this author inPubMed Google Scholar
- German C. Spangenberg
You can also search for this author inPubMed Google Scholar
- Kevin F. Smith
You can also search for this author inPubMed Google Scholar
- John W. Forster
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJohn W. Forster.
Additional information
Communicated by Y. van de Peer.
Electronic supplementary material
Below is the link to the electronic supplementary material.
438_2008_365_MOESM1_ESM.doc
MOESM1 Summary information for GenBank submissions of sub-genome specific DNA sequences derived from template genes in this study. Definitions, accession numbers, lengths, nucleotide content, feature descriptions and text versions of sequences are provided. Consensus sequences for multiple haplotypes are provided, with sub-genome specific SNPs coded as redundant bases (M = A or C; R = A or G; W = A or T; S = C or G; Y = C or T; K = G or T; V = A, C or G; H = A, C or T; D = A, G or T; b = C, G or T; N = A, T, C or G) (DOC 89 kb)
438_2008_365_MOESM2_ESM.ppt
MOESM2 Distribution of SNP loci within the structure of the TrDHNb dehydrin gene. The two exons and a single intron are indicated as black and grey boxes, respectively. Positions of LAPs used to generate genomic amplicons are indicated, while arrows denote SNPs in the exons (12) and intron (7) (PPT 39 kb)
438_2008_365_MOESM3_ESM.doc
MOESM3 Full information for levels of nucleotide identity between T. occidentale and T. pallescens reference sequences and O and P' sub-genome sequences. Average values for the consensus sequences of each white clover mapping family parental genotype are presented for each gene (DOC 125 kb)
Rights and permissions
About this article
Cite this article
Hand, M.L., Ponting, R.C., Drayton, M.C.et al. Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa.Mol Genet Genomics280, 293–304 (2008). https://doi.org/10.1007/s00438-008-0365-y
Received:
Accepted:
Published:
Issue Date: