- Alexander Ziegler1,
- Martin Kunth2,
- Susanne Mueller3,
- Christian Bock4,
- Rolf Pohmann5,
- Leif Schröder2,
- Cornelius Faber6 &
- …
- Gonzalo Giribet1
1705Accesses
3Altmetric
Abstract
Magnetic resonance imaging (MRI) is a noninvasive imaging technique that today constitutes one of the main pillars of preclinical and clinical imaging. MRI’s capacity to depict soft tissue in whole specimens ex vivo as well as in vivo, achievable voxel resolutions well below (100 μm)3, and the absence of ionizing radiation have resulted in the broad application of this technique both in human diagnostics and studies involving small animal model organisms. Unfortunately, MRI systems are expensive devices and have so far only sporadically been used to resolve questions in zoology and in particular in zoomorphology. However, the results from two recent studies involving systematic scanning of representative species from a vertebrate group (fishes) as well as an invertebrate taxon (sea urchins) suggest that MRI could in fact be used more widely in zoology. Using novel image data derived from representative species of numerous higher metazoan clades in combination with a comprehensive literature survey, we review and evaluate the potential of MRI for systematic taxon scanning. According to our results, numerous animal groups are suitable for systematic MRI scanning, among them various cnidarian and arthropod taxa, brachiopods, various molluscan taxa, echinoderms, as well as all vertebrate clades. However, various phyla in their entirety cannot be considered suitable for this approach mainly due to their small size (e.g., Kinorhyncha) or their unfavorable shape (e.g., Nematomorpha), while other taxa are prone to produce artifacts associated either with their biology (e.g., Echiura) or their anatomy (e.g., Polyplacophora). In order to initiate further uses of MRI in zoology, we outline the principles underlying various applications of this technique such as the use of contrast agents, in vivo MRI, functional MRI, as well as magnetic resonance spectroscopy. Finally, we discuss how future technical developments might shape the use of MRI for the study of zoological specimens.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.









Similar content being viewed by others

Cross-sectional anatomy, computed tomography, and magnetic resonance imaging of the banded houndshark (Triakis scyllium)
Abbreviations
- 2D:
Two-dimensional
- 3D:
Three-dimensional
- BBB:
Blood–brain barrier
- BOLD:
Blood oxygenation level-dependent
- CA:
Contrast agent
- cLSM:
Confocal laser scanning microscopy
- CSI:
Chemical shift imaging
- CT:
Computed tomography
- DTI:
Diffusion tensor imaging
- DWI:
Diffusion-weighted imaging
- FLASH:
Fast low-angle shot
- FMNH:
Field Museum of Natural History
- fMRI:
Functional magnetic resonance imaging
- FOV:
Field of view
- FR :
RARE factor
- FSPGR:
Fast spoiled gradient echo
- MEMRI:
Manganese-enhanced magnetic resonance imaging
- MR:
Magnetic resonance
- MRI:
Magnetic resonance imaging
- MRS:
Magnetic resonance spectroscopy
- NA :
Average number
- NMR:
Nuclear magnetic resonance
- OPT:
Optical projection tomography
- PET:
Positron emission tomography
- RARE:
Rapid acquisition with relaxation enhancement
- SE:
Spin echo
- SIO:
Scripps Institution of Oceanography
- SNR:
Signal-to-noise ratio
- TA :
Acquisition time
- TE :
Echo time
- TR :
Repetition time
- TSE:
Turbo spin echo
- μCT:
Micro-computed tomography
- ZMB:
Zoologisches Museum Berlin
- ZMH:
Zoologisches Museum Hamburg
References
Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S (2009) Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162:1339–1350
Ardenkjar-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH (2003) Increase in signal-to-noise ratio of >10, 000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163
Assheuer J, Sager M (1997) MRI and CT atlas of the dog. Blackwell Science, Berlin
Baker M (2010) The whole picture. Nature 463:977–980
Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22:834–842
Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254
Belton PS, Gil AM, Webb GA, Rutledge D (2003) Magnetic resonance in food science: latest developments. RSC Publishing, Cambridge
Belton PS, Engelsen SB, Jakobsen HJ, Amin MHG, van den Berg F (2005) Magnetic resonance in food science: the multivariate challenge. RSC Publishing, Cambridge
Benveniste H, Blackband SJ (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420
Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5:536–544
Berthold P, Elverfeldt D, Fiedler W, Hennig J, Kaatz M, Querner U (2001) Magnetic resonance imaging and spectroscopy (MRI, MRS) of seasonal patterns in body composition: a methodological pilot study in white storks (Ciconia ciconia). J Ornithol 142:63–72
Blackband SJ, Stoskopf MK (1990) In vivo nuclear magnetic resonance imaging and spectroscopy of aquatic organisms. Magn Reson Imag 8:191–198
Blamire AM (2008) The technology of MRI–the next 10 years? Br J Radiol 81:601–617
Bock C, Frederich M, Wittig RM, Pörtner HO (2001a) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imag 19:1113–1124
Bock C, Sartoris FJ, Wittig RM, Pörtner HO (2001b) Temperature dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in vivo NMR study. Polar Biol 24:869–874
Bock C, Sartoris FJ, Pörtner HO (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imag 20:165–172
Bock C, Lurmann G, Pörtner HO (2007) Temperature and oxygenation dependence of haemoglobin and hemocyanin relaxation times at 9.4 T. Proc Int Soc Magn Reson Med 15:2749
Boistel R, Swoger J, Krzic U, Fernandez V, Gillet B, Reynaud EG (2011) The future of three-dimensional microscopic imaging in marine biology. Marine Ecol. doi:10.1111/j.1439-0485.2011.00442.x
Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508:333–348
Bringmann G, Wolf K, Lanz T, Haase A, Hiort J, Proksch P, Müller WEG (1999) Direct demonstration of spatial water distribution in the spongeSuberites domunucla by in vivo NMR imaging. Mar Ecol Prog Ser 189:307–310
Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132
Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab,Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40
Budd GE, Olsson L (2007) Editorial: a renaissance for evolutionary morphology. Acta Zool (Stockholm) 88:1
Butcher PA, Broadhurst MK, Hall KC, Cullis BR, Nicoll RG (2009) Scale loss and mortality in angled-and-released Eastern sea garfish (Hyporhamphus australis). ICES J Marine Sci 67:522–529
Chanet B, Fusellier M, Baudet J, Madec S, Guintard C (2009) No need to open the jar: a comparative study of magnetic resonance imaging results on fresh and alcohol preserved common carps (Cyprinus carpio (L. 1758), Cyprinidae, Teleostei). Comptes Rendus de Biol 332:413–419
Chudek JA, Crook AME, Hubbard SF, Hunter G (1996) Nuclear magnetic resonance microscopy of the development of the parasitoid waspVenturia canescens within its host mothPlodia interpunctella. Magn Reson Imag 14:679–686
Conner WE, Johnson GA, Coffer GP, Dittrich K (1988) Magnetic resonance microscopy—in vivo sectioning of a developing insect. Experientia 44:11–12
Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52:196–204
Corfield JR, Wild JM, Cowan BR, Parsons S, Kubke MF (2008) MRI of postmortem specimens of endangered species for comparative brain anatomy. Nat Protoc 3:597–605
Czisch M, Coppack T, Berthold P, Auer DP (2001) In vivo magnetic resonance imaging of the reproductive organs in a passerine bird species. J Avian Biol 32:278–281
Davenel A, Quellec S, Pouvreau S (2006) Noninvasive characterization of gonad maturation and determination of the sex of Pacific oysters by MRI. Magn Reson Imag 24:1103–1110
Davenel A, González R, Suquet M, Quellec S, Robert R (2010) Individual monitoring of gonad development in the European flat oysterOstrea edulis by in vivo magnetic resonance imaging. Aquaculture 307:165–169
De Groof G, Verhoye M, van Meir V, Tindemans I, Leemans A, van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749
Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sorensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172
Elliott I, Skerritt G (2010) Handbook of small animal MRI. Wiley-Blackwell, Oxford
Endo H, Yamagiwa D, Arishima K, Yamamoto M, Sasaki M, Hayashi Y, Kamiya T (1999) MRI examination of trachea and bronchi in the Ganges river dolphin (Platanista gangetica). J Vet Med Sci 61:1137–1141
Farhat IA, Belton PS, Webb GA (2007) Magnetic resonance in food science: from molecules to man. RSC Publishing, Cambridge
Favila ME, Fresneau D, Gonord P, Ruaud JP (2004) Nuclear magnetic resonance microscopy of the internal structure of the carrion rolling scarabCanthon cyanellus cyanellus (Scarabaeidae: Scarabaeinae). Coleopt Bull 58:1125–1131
Fernández M, Bock C, Pörtner HO (2000) The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecol Lett 3:487–494
Forbes JG, Morris HD, Wang K (2006) Multimodal imaging of the sonic organ ofPorichthys notatus, the singing midshipman fish. Magn Reson Imag 24:321–331
Forbes SC, Slade JM, Francis RM, Meyer RA (2009) Comparison of oxidative capacity among leg muscles in humans using gated31P 2-D chemical shift imaging. NMR Biomed 22:1063–1071
Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93
Fresneau D, Dantas de Araujo C, Kan SK, Gonord P, Jallon JM (1991) Premières tentatives d’imagerie RMN sur des insectes. Actes des Colloques Insectes Sociaux 7:195–199
Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized13C-labelled bicarbonate. Nature 453:940–943
Garwood M, De la Barre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177
Gassner G, Lohmann JAB (1987) Combined proton NMR imaging and spectral analysis of locust embryonic development. Proc Natl Acad Sci USA 84:5297–5300
Gavin PR, Bagley RS (2010) Practical small animal MRI. Wiley-Blackwell, Oxford
Geoghegan IE, Chudek JA, Mackay RL, Lowe C, Moritz S, McNicol RJ, Birch ANE, Hunter G, Majerus MEN (2000) Study of anatomical changes inCoccinella septempunctata (Coleoptera: Coccinellidae) induced by diet and by infection with the larva ofDinocampus coccinellae (Hymenoptera: Braconidae) using magnetic resonance microimaging. Eur J Entomol 97:457–461
Giribet G (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool (Stockholm) 91:11–19
Glover P, Mansfield P (2002) Limits to magnetic resonance microscopy. Rep Prog Phys 65:1489–1511
Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond13C angiography. Magn Reson Med 46:1–5
Goodman BA, Gordon SC, Chudek JA, Hunter G, Woodford JAT (1995) Nuclear magnetic resonance microscopy as a non-invasive tool to study the development of lepidopteran pupae. J Insect Physiol 41:419–424
Gozansky EK, Ezell EL, Budelmann BU, Quast MJ (2003) Magnetic resonance histology: in situ single cell imaging of receptor cells in an invertebrate (Lolliguncula brevis, Cephalopoda) sense organ. Magn Reson Imag 21:1019–1022
Granot J (1986) Selected volume excitation using stimulated echoes (VEST): application to spatially localized spectroscopy and imaging. J Magn Reson 70:488–492
Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, Webb AG, Blackband SJ (2000) NMR spectroscopy of single neurons. Magn Reson Med 44:19–22
Gujonsdottir M, Belton PS, Webb GA (2009) Magnetic resonance in food science: challenges in a challenging world. RSC Publishing, Cambridge
Haddad D, Schaupp F, Brandt R, Manz G, Menzel R, Haase A (2004) NMR imaging of the honeybee brain. J Insect Sci 4:7
Hallock KJ (2008) Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm,Manduca sexta. J Insect Sci 8:10
Hart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FLW (2003) Magnetic resonance imaging in entomology: a critical review. J Insect Sci 3:5
Herberholz J, Mims CJ, Zhang X, Hu X, Edwards DH (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550
Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H (2008) Stereotactic biopsy in gliomas guided by 3-Tesla1H-chemical-shift imaging of choline. Stereotact Funct Neurosurg 86:300–307
Holliman FM, Davis D, Bogan AE, Kwak TJ, Cope WG, Levine JF (2008) Magnetic resonance imaging of live freshwater mussels (Unionidae). Invertebr Biol 127:396–402
Hopkins WD, Pilcher DW, MacGregor L (2000) Sylvian fissure asymmetries in nonhuman primates revisited: a comparative MRI study. Brain Behav Evol 56:293–299
Hörnschemeyer T, Goebbels J, Weidemann G, Faber C, Haase A (2006) The head morphology ofAscioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata. Eur J Entomol 103:409–423
Hsu EW, Aiken NR, Blackband SJ (1996) Nuclear magnetic resonance microscopy of single neurons under hypotonic perturbation. Am J Physiol 271:C1895–C1900
Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073
Jakob P (2011) Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler BJ, Hauff P (eds) Small animal imaging. Basics and practical guide. Springer, Berlin, pp 151–164
Jasanoff A (2005) Functional MRI using molecular imaging agents. Trends Neurosci 28:120–126
Jasanoff A, Sun PZ (2002) In vivo magnetic resonance microscopy of brain structure in unanesthetized flies. J Magn Reson 158:79–85
Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25:356–369
Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439
Kaufman JA, Ahrens ET, Laidlaw DH, Zhang S, Allman JM (2005) Anatomical analysis of an Aye–Aye brain (Daubentonia madagascariensis, Primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging. Anat Rec A 287:1026–1037
Kiessling F, Pichler BJ, Hauff P (2011) Small animal imaging. Basics and practical guide. Springer, Berlin
Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22:303–309
Kuoni W, Augustiny N, Rübel A (1993) Application of magnetic resonance imaging in reptile medicine. MAGMA 1:61–63
Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod,Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring. Am J Physiol Regul Integr Comp Physiol 287:R902–R910
Lannig G, Cherkasov AS, Pörtner HO, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:1338–1346
Lauridsen H, Hansen K, Wang T, Agger P, Andersen JL, Knudsen PS, Rasmusseun AS, Uhrenholt L, Pedersen M (2011) Inside out: modern imaging techniques to reveal animal anatomy. PLoS One 6:e17879
Lazar N (2008) The statistical analysis of functional MRI data. Springer, Berlin
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407
Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 24:478–488
Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Kang D, Lee W, Cheong C (2007) In vivo magnetic resonance microscopy of differentiation inXenopus laevis embryos from the first cleavage onwards. Differentiation 75:84–92
Lee H, Tikunov A, Stoskopf MK, Macdonald JM (2010) Applications of chemical shift imaging to marine sciences. Marine Drugs 8:2369–2383
Lin YJ, Koretsky AP (1997) Manganese ion enhancesT1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–388
Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159
Lohmann JAB, Gassner G (1987) Proton NMR in vivo imaging: a tool for studying embryo development of small organisms. Ann NY Acad Sci 508:435–436
Lohmann JAB, Ratcliffe RG (1988) Prospects for NMR imaging in the study of biological morphogenesis. Experientia 44:666–672
Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325
Mapelli M, Greco F, Gussoni M, Consonni R, Zetta L (1997) Application of NMR microscopy to the morphological study of the silkworm,Bombyx mori, during its metamorphosis. Magn Reson Imag 15:693–700
Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414
Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429
Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003a) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347
Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003b) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76
Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec A 281:1256–1263
Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and31P-MRS. Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262
Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152
Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11
Michaelis T, Watanabe T, Natt O, Boretius S, Frahm J, Utz S, Schachtner J (2005) In vivo 3D MRI of insect brain: cerebral development during metamorphosis ofManduca sexta. Neuroimage 24:596–602
Mietchen D, Keupp H, Manz B, Volke F (2005) Non-invasive diagnostics in fossils—magnetic resonance imaging of pathological belemnites. Biogeosciences 2:133–140
Mietchen D, Aberhan M, Manz B, Hampe O, Mohr B, Neumann C, Volke F (2008a) Three-dimensional magnetic resonance imaging of fossils across taxa. Biogeosciences 5:25–41
Mietchen D, Manz B, Volke F, Storey K (2008b) In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 12:e3826
Modo M, Bulte JWH (2011) Magnetic resonance neuroimaging. Methods and protocols. Springer, Berlin
Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759
Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006) Magnetic resonance imaging of the siliceous skeleton of the demospongeLubomirskia baicalensis. J Struct Biol 153:31–41
Murray RC (2011) Equine MRI. Blackwell-Wiley, Oxford
Natt O, Frahm J (2005) In vivo magnetic resonance imaging: insights into structure and function of the central nervous system. Meas Sci Technol 16:R17–R36
Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ (2002) A kinematic model of swallowing inAplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J Exp Biol 205:3177–3206
Nott KP, Evans SD, Hall LD (1999) Quantitative magnetic resonance imaging of fresh and frozen-thawed trout. Magn Reson Imag 17:445–455
Novakovic VA, Sutton GP, Neustadter DM, Beer RD, Chiel HJ (2006) Mechanical reconfiguration mediates swallowing and rejection inAplysia californica. J Comp Physiol A 192:857–870
Null B, Liu CW, Hedehus M, Conolly S, Davis RW (2008) High-resolution, in vivo magnetic resonance imaging ofDrosophila at 18.8 Tesla. PLoS One 3:e2817
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872
Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294
Perry CN, Cartamil DP, Bernal D, Sepulveda CA, Theilmann RJ, Graham JB, Frank LR (2007) Quantification of red myotomal muscle volume and geometry in the shorfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) usingT1-weighted magnetic resonance imaging. J Morphol 268:284–292
Petiet A, Hedlund L, Johnson GA (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imag 25:1192–1198
Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906
Pohlmann A, Möller M, Decker H, Schreiber WG (2007) MRI of tarantulas: morphological and perfusion imaging. Magn Reson Imag 25:129–135
Pohmann R, von Kienlin M, Haase A (1997) Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson 129:145–160
Poirier C, Vellema M, Verhoye M, van Meir V, Wild JM, Balthazart J, van der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6
Pouvreau S, Rambeau M, Cochard JC, Robert R (2006) Investigation of marine bivalve morphology by in vivo MR imaging: first anatomical results of a promising technique. Aquaculture 259:415–423
Price WS, Kobayashi A, Ide H, Natori S, Arata Y (1999) Visualizing the postembryonic development ofSarcophaga peregrina (flesh fly) by NMR microscopy. Physiol Entomol 24:386–390
Quast MJ, Neumeister H, Ezell EL, Budelmann BU (2001) MR microscopy of cobalt-labeled nerve cells and pathways in an invertebrate brain (Sepia officinalis, Cephalopoda). Magn Reson Med 45:575–579
Raiti P, Haramati N (1997) Magnetic resonance imaging and computerized tomography of a gravid leopard tortoise (Geochelone pardalis pardalis) with metabolic bone disease. J Zoo Wildl Med 28:189–197
Rasmussen AS, Lauridsen H, Laustsen C, Jensen BG, Pedersen SF, Uhrenholt L, Boel LWT, Uldbjerg N, Wang T, Pedersen M (2010) High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol 10:3
Renou JP, Belton PS, Webb GA (2011) Magnetic resonance in food science: an exciting future. RSC Publishing, Cambridge
Ridgway S, Houser D, Finneran J, Carder D, Keogh M, van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910
Rogers BL, Lowe CG, Fernández-Juricic E, Frank LR (2008) Utilizing magnetic resonance imaging (MRI) to assess the effects of angling-induced barotrauma on rockfish (Sebastes). Can J Fish Aquac Sci 65:1245–1249
Rowe T, Frank LR (2011) The disappearing third dimension. Science 331:712–714
Rubinsky B, Wong STS, Hong JS, Gilbert J, Roos M, Storey KB (1994a)1H magnetic resonance imaging of freezing and thawing in freeze-tolerant frogs. Am J Physiol 266:R1771–R1777
Rubinsky B, Hong JS, Storey KB (1994b) Freeze tolerance in turtles: visual analysis by microscopy and magnetic resonance imaging. Am J Physiol 267:R1078–R1088
Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA (2009) Evidence for cranial endothermy in the opah (Lampris guttatus). J Exp Biol 212:461–470
Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34:685–700
Sbarbati A, Leclerq F, Antonakis K, Osculati F (1992) Magnetic resonance imaging of the saccular otolithic mass. J Anat 181:369–732
Schmidt-Rhaesa A (2009) Morphology and deep metazoan phylogeny. Zoomorphology 128:199–200
Schröder L, Faber C (2011) In vivo NMR imaging. Methods and protocols. Methods in Molecular Biology 771. Humana Press, New York
Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449
Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 30:10901–10906
Silva AC, Lee JH, Aoki I, Koretsky AP (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543
Skibbe U, Christeller JT, Eccles CD, Laing WA, Callaghan PT (1995) A method to distinguish between chemical shift and susceptibility effects in NMR micoscopy and its application to insect larvae. Magn Reson Imag 13:471–479
Slowik TJ, Green BL, Thorvilson HG (1997) Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging. Bioelectromagnetics 18:396–399
Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO (2009) Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 297:756–768
Straub J, Jurina K (2001) Magnetic resonance imaging in chelonians. Semin Avian Exotic Pet Med 10:181–186
Synthesys Network Activity F Pilot Study “Report on the technical parameters of MRI”.http://www.synthesys.info/na_f.htm
Takahashi MK, Kato K, Matsushita K, Umeda M, Nishina M, Hori E, Takahashi M, Oshaka A (1989)1H-MRI and in vivo31P-MRS study of diseased state of smoky-brown cockroach infected with cockroach densovirus. Jpn J Sanit Zool 40:289–293
Tindemans I, Verhoye M, Balthazart J, van der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 18:3352–3360
Tomanek B, Jasinski A, Sulek Z, Muszynska J, Kulnowski P, Kwiecinski S, Krzyzak A, Skorka T, Kibinski J (1996) Magnetic resonance microscopy of internal structure of drone and queen honey bees. J Apic Res 35:3–9
Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16:93–99
Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23:341–346
Ulmer S, Jansen O (2010) fMRI. Basics and clinical applications. Springer, Berlin
Valente ALS, Cuenca R, Zamora MA, Parga ML, Lavin S, Alegre F, Marco I (2006) Sectional anatomic and magnetic resonance imaging of coelomic structures of loggerhead sea turtles. Am J Vet Res 67:1347–1353
Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518
Van den Burg EH, Verhoye M, Peeters RR, Meek J, Flik G, van der Linden A (2006) Activation of a sensorimotor pathway in response to a water temperature drop in a teleost fish. J Exp Biol 209:2015–2024
Van der Linden A, Verhoye M, Pörtner HO, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phys Biol Med 17:236–248
Van der Linden A, van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545
Van der Linden A, van Meir V, Boumans T, Poirier C, Balthazart J (2009) MRI in small brains displaying extensive plasticity. Trends Neurosci 32:257–266
Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post mortem studies of fish using magnetic resonance imaging. Mod Magn Reson 1:959–966
Veliyulin E, Felberg HS, Digre H, Martinez I (2007) Non-destructive nuclear magnetic resonance image study of belly bursting in herring (Clupea harengus). Food Chem 101:1545–1551
Von Brand E, Cisterna M, Merino G, Uribe E, Palma-Rojas C, Rosenblitt M, Albornoz JL (2009) Non-destructive method to study the internal anatomy of the Chilean scallopArgopecten purpuratus. J Shellfish Res 28:325–327
Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642
Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Hériche JK (2010) Visualization of image data from cells to organisms. Nat Methods Suppl 7:S26–S41
Wang LC, Wan DP, Jung SM, Chen CC, Wong HF, Wan YL (2005) Magnetic resonance imaging findings in the brains of rabbits infected withAngiostrongylus cantonensis: a long-term investigation. J Parasitol 91:1237–1239
Watanabe T, Schachtner J, Krizan M, Boretius S, Frahm J, Michaelis T (2006) Manganese-enhanced 3D MRI of established and disrupted synaptic activity in the developing insect brain in vivo. J Neurosci Methods 158:50–55
Webb GA, Belton PS, Gil AM, Delgadillo I (2001) Magnetic resonance in food science: a view to the future. RSC Publishing, Cambridge
Wecker S, Hörnschemeyer T, Hoehn M (2002) Investigation of insect morphology by MRI: assessment of spatial and temporal resolution. Magn Reson Imag 20:105–111
Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44
Westheide W, Rieger R (2007) Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere. 2. Auflage. Spektrum Akademischer Verlag, München
Westheide W, Rieger R (2010) Spezielle Zoologie, Teil 2: Wirbel- oder Schädeltiere. 2. Auflage. Spektrum Akademischer Verlag, München
Zhang X, Schneider JE, Portnoy S, Bhattacharya S, Henkelman RM (2010) Comparative SNR for high-throughput mouse embryo MR microscopy. Magn Reson Med 63:1703–1707
Ziegler A (in press) Broad application of non-invasive imaging techniques to echinoids and other echinoderm taxa. In: Proceedings of the 7th European Conference on Echinoderms. Lecture Notes Proceedings. Springer, Berlin
Ziegler A, Mueller S (2011) Analysis of freshly fixed and museum invertebrate specimens using high-resolution, high-throughput MRI. In: Schröder L, Faber C (eds) In vivo NMR imaging. Methods in Molecular Biology 771. Humana Press, New York, pp 633–651
Ziegler A, Faber C, Mueller S, Bartolomaeus T (2008) Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biol 6:33
Ziegler A, Bartolomaeus T, Mueller S (2010a) Sea urchin (Echinoidea) anatomy revealed by magnetic resonance imaging and 3D visualization. In: Harris LG, Boettger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. CRC Press, Boca Raton, pp 305–310
Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A (2010b) Opportunities and challenges for digital morphology. Biol Direct 5:45
Ziegler A, Mooi R, Rolet G, De Ridder C (2010c) Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 10:313
Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, Sellerer M, Ziegler A (2011) Effectively incorporating selected multimedia content into medical publications. BMC Med 9:17
Acknowledgments
We would like to thank Thomas Bartolomaeus (Bonn, Germany), Sven Gemballa (Tübingen, Germany), Matthias Glaubrecht (Berlin, Germany), Alexander Gruhl (London, United Kingdom), Alexander Haas (Hamburg, Germany), Markus Koch (Bonn, Germany), Janina Lehrke (Bonn, Germany), Carsten Lüter (Berlin, Germany), Christian Müller (Frankfurt, Germany), Thomas Stach (Berlin, Germany), and Esther Ullrich-Lüter (Berlin, Germany) for specimen supply. We also gratefully acknowledge editorial support by Christopher Witte (Berlin, Germany). Bivalve research was supported by AToL grants from the National Science Foundation, USA, to Rüdiger Bieler (#0732854), Paula M. Mikkelsen (#0732860), and Gonzalo Giribet (#0732903). We are grateful to Thomas Bartolomaeus, Doug Eernisse and one anonymous reviewer for their supportive comments on this manuscript.
Author information
Authors and Affiliations
Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
Alexander Ziegler & Gonzalo Giribet
Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
Martin Kunth & Leif Schröder
Centrum für Schlaganfallforschung, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
Susanne Mueller
Alfred-Wegener-Institut für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
Christian Bock
Max-Planck-Institut für Biologische Kybernetik, Spemannstr. 41, 72076, Tübingen, Germany
Rolf Pohmann
Institut für Klinische Radiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
Cornelius Faber
- Alexander Ziegler
You can also search for this author inPubMed Google Scholar
- Martin Kunth
You can also search for this author inPubMed Google Scholar
- Susanne Mueller
You can also search for this author inPubMed Google Scholar
- Christian Bock
You can also search for this author inPubMed Google Scholar
- Rolf Pohmann
You can also search for this author inPubMed Google Scholar
- Leif Schröder
You can also search for this author inPubMed Google Scholar
- Cornelius Faber
You can also search for this author inPubMed Google Scholar
- Gonzalo Giribet
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toAlexander Ziegler.
Additional information
Communicated by T. Bartolomaeus.
Rights and permissions
About this article
Cite this article
Ziegler, A., Kunth, M., Mueller, S.et al. Application of magnetic resonance imaging in zoology.Zoomorphology130, 227–254 (2011). https://doi.org/10.1007/s00435-011-0138-8
Received:
Revised:
Accepted:
Published:
Issue Date: