- Lijing Cheng1,2,
- John Abraham3,
- Kevin E. Trenberth4,5,
- John Fasullo4,
- Tim Boyer6,
- Michael E. Mann7,
- Jiang Zhu1,2,
- Fan Wang2,8,
- Ricardo Locarnini6,
- Yuanlong Li2,8,
- Bin Zhang2,8,
- Fujiang Yu9,
- Liying Wan9,
- Xingrong Chen9,
- Licheng Feng9,
- Xiangzhou Song10,
- Yulong Liu11,
- Franco Reseghetti12,
- Simona Simoncelli13,
- Viktor Gouretski1,
- Gengxin Chen14,
- Alexey Mishonov6,15,
- Jim Reagan6 &
- …
- Guancheng Li16
14kAccesses
74Citations
2945 Altmetric
399Mentions
Abstract
Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 1021 Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.
摘要
由于人类活动排放温室气体, 全球能量和水循环已经发生了显著的变化, 驱动了气候系统的一系列变异. 海洋热含量、 盐度和层结变化是地球系统能量和水循环的重要指针. 2022 年, 全球海洋上层 2000 米热含量再破记录, 海洋成为有现代记录以来最热的一年. 据中国科学院大气物理研究所的测算, 2022 年 0–2000 米海洋热含量超过 2021 年 10.9 ± 8.3 泽塔焦耳 (1 泽塔焦耳= 1021焦耳). 与之一致, 美国国家海洋和大气管理局国家环境信息中心的测算为 9.1 ± 8.7 泽塔焦耳. 在所研究的 7 个海盆中, 北太平洋、 北大西洋、 地中海、 南大洋这 4 个海盆的 2022 年度热含量均创下了自上世纪 50 年代以来的新记录. 此外, 定量化测算海洋盐度 “咸变咸, 淡变淡” 变化趋势的 “盐度差指数” 也在 2022 年达到过去半世纪以来的最高值, 反映了全球水循环在不断加速. 在区域尺度, 海洋热含量和盐度变化显示出较强的拉尼娜事件的影响. 最后, 全球上层 2000 米海洋层结也持续加强, 2022 年全球海洋层结处于有现代记录以来的第 7 高位.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Abraham, J., L. J. Cheng, M. E. Mann, K. Trenberth, and K. von Schuckmann, 2022: The ocean response to climate change guides both adaptation and mitigation efforts.Atmospheric and Oceanic Science Letters,15, 100221,https://doi.org/10.1016/j.aosl.2022.100221.
Abraham, J., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change.Rev. Geophys.,51, 450–483,https://doi.org/10.1002/rog.20022.
Argo, 2022: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE,https://doi.org/10.17882/42182.
Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport.Nature Geoscience,9, 549–554,https://doi.org/10.1038/ngeo2731.
Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.
Cheng, L., and Coauthors, 2022a: Past and future ocean warming.Nature Reviews Earth & Environment,3, 776–794,https://doi.org/10.1038/s43017-022-00345-1.
Cheng, L. J., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations.J. Atmos. Oceanic Technol.,31(8), 1793–1825,https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L. J., G. Foster, Z. Hausfather, K. E. Trenberth, and J. Abraham, 2022b: Improved quantification of the rate of ocean warming.J. Climate,35, 4827–4840,https://doi.org/10.1175/JCLI-D-21-0895.1.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017a: Improved estimates of ocean heat content from 1960 to 2015.Science Advances,3, e1601545,https://doi.org/10.1126/sciadv.1601545.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO.J. Climate,32, 3529–3556,https://doi.org/10.1175/JCLI-D-18-0607.1.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, J. P. Abraham, T. P. Boyer, K. von Schuckmann, and J. Zhu, 2017b: Taking the pulse of the planet. EOS,98, 14–15,https://doi.org/10.1029/2017EO081839.
Cheng, L., K. E. Trenberth, N. Gruber, J. P. Abraham, J. T. Fasullo, G. Li, M. E. Mann, X. Zhao, and J. Zhu, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle.J. Clim.,33, 10357–10381,https://doi.org/10.1175/JCLI-D-20-0366.1.
Cowley R., and Coauthors, 2021: International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification. Front. Mar. Sci. 8:689695.https://doi.org/10.3389/fmars.2021.689695.
Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming.Nature Geoscience,4, 398–403,https://doi.org/10.1038/ngeo1129.
Durack, P. J., 2015: Ocean salinity and the global water cycle.Oceanography,28, 20–31,https://doi.org/10.5670/oceanog.2015.03.
Escudier, R., and Coauthors, 2020: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS).https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
Escudier, R., and Coauthors, 2021: A High Resolution Reanalysis for the Mediterranean Sea. Front. Earth Sci. 9:702285.https://doi.org/10.3389/feart.2021.702285.
Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future.Proceedings of the National Academy of Sciences of the United States of America,115, 12944–12949,https://doi.org/10.1073/pnas.1813233115.
Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled Climate Responses to Recent Australian Wildfire and COVID-19 Emissions Anomalies Estimated in CESM2,Geo. Res. Lett.,https://doi.org/10.1029/2021GL093841.
Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in NingalooNiño since the late 1990s.Geophys. Res. Lett.,42, 104–112,https://doi.org/10.1002/2014GL062509.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes.Nature Climate Change,11, 689–695,https://doi.org/10.1038/s41558-021-01092-9.
Gouretski, V., and L. J. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs.J. Atmos. Oceanic Technol.,37(5), 841–855,https://doi.org/10.1175/JTECH-D-19-0205.1.
Gouretski, V., L. J. Cheng, and T. Boyer, 2022: On the consistency of the bottle and CTD profile data.J. Atmos. Oceanic Technol.,39(12), 1869–1887,https://doi.org/10.1175/JTECH-D-22-0004.1.
Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications.Atmospheric Chemistry and Physics,11, 13421–13449,https://doi.org/10.5194/acp-11-13421-2011.
Huang, R. X., L. S. Yu, and S. Q. Zhou, 2018: New definition of potential spicity by the least square method.J. Geophys. Res.: Oceans,123(10), 7351–7365,https://doi.org/10.1029/2018JC014306.
Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections.Journal Oceanography,65, 287–299,https://doi.org/10.1007/s10872-009-0027-7.
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017].Bull. Amer. Meteor. Soc.,99, S72–S77.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems.Geophys. Res. Lett.,36, L07608,https://doi.org/10.1029/2008GL037155.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010.Geophys. Res. Lett.,39, L10603,https://doi.org/10.1029/2012GL051106.
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century.Nature Climate Change,10, 1116–1123,https://doi.org/10.1038/s41558-020-00918-2.
Li, X. C., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes.Nature Reviews Earth & Environment,2, 680–698,https://doi.org/10.1038/S43017-021-00204-5.
Li, Y. L., W. Q. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown.Geophys. Res. Lett.,44, 9876–9884,https://doi.org/10.1002/2017GL075050.
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper-Indian Ocean thermal variability.J. Climate,33, 7233–7253,https://doi.org/10.1175/JCLI-D-19-0851.1.
McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies.Geophys. Res. Lett.,39, L09706,https://doi.org/10.1029/2012GL051826.
Murakami, H., 2022: Substantial global influence of anthropogenic aerosols on tropical cyclones over the past 40 years.Science Advances,8, eabn9493,https://doi.org/10.1126/sciadv.abn9493.
Nguyen, P. L., S. K. Min, and Y. H. Kim, 2021: Combined impacts of the El Niño — Southern Oscillation and Pacific decadal oscillation on global droughts assessed using the standardized precipitation evapotranspiration index.International Journal of Climatology,41, E1645–E1662,https://doi.org/10.1002/joc.6796.
Nigam, T., and Coauthors, 2021: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS).https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I.
Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-Century slowdown in Atlantic Ocean overturning circulation.Nature Climate Change,5, 475–480,https://doi.org/10.1038/nclimate2554.
Ren, Q. P., Y.-O. Kwon, J. Y. Yang, R.-X. Huang, Y. L. Li, and F. Wang, 2022: Increasing inhomogeneity of the global oceans.Geophys. Res. Lett.,49, e2021GL097598,https://doi.org/10.1029/2021GL097598.
Rhein, M., and Coauthors, 2013: Observations: Ocean.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific.Geophys. Res. Lett.,47, e2020GL090548,https://doi.org/10.1029/2020GL090548.
Schmitt, R. W., 1995: The ocean component of the global water cycle.Rev. Geophys.,33(Suppl. 2), 1395–1409,https://doi.org/10.1029/95RG00184.
Simoncelli, S., and Coauthors., 2022: A collaborative framework among data producers, managers, and users. In: Manzella, G., Novellino, A. (Eds.), Ocean Science Data: Collection, Management, Networking and Services. Elsevier, pp. 197–280.
Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming?Earth’s Future,1, 19–32,https://doi.org/10.1002/2013EF000165.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget.Bull. Amer. Meteor. Soc.,90, 311–324,https://doi.org/10.1175/2008BAMS2634.1.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance.J. Climate,27, 3129–3144,https://doi.org/10.1175/JCLI-D-13-00294.1.
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation.Earth’s Future,6, 730–744,https://doi.org/10.1029/2018EF000825.
Truchelut, R. E., P. J. Klotzbach, E. M. Staehling, K. M. Wood, D. J. Halperin, C. J. Schreck, and E. S. Blake, 2022: Earlier onset of North Atlantic hurricane season with warming oceans.Nature Communications,13, 4646,https://doi.org/10.1038/s41467-022-31821-3.
Vecchi, G. A., C. Landsea, W. Zhang, G. Villarini, and T. Knutson, 2021: Changes in Atlantic major hurricane frequency since the late-19th century.Nature Communications,12, 4054,https://doi.org/10.1038/s41467-021-24268-5.
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018.Science Advances,6, eabc1151,https://doi.org/10.1126/sciadv.abc1151.
von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance.Nature Climate Change,6, 138–144,https://doi.org/10.1038/nclimate2876.
von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go?Earth System Science Data,12, 2013–2041,https://doi.org/10.5194/essd-12-2013-2020.
Wang, G. J., and Coauthors, 2022: Future Southern Ocean warming linked to projected ENSO variability.Nature Climate Change,12, 649–654,https://doi.org/10.1038/s41558-022-01398-2.
Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. De Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot.Nature Climate Change,3, 78–82,https://doi.org/10.1038/nclimate1627.
Yu, L. S., S. A. Josey, F. M. Bingham, and T. Lee, 2020: Intensification of the global water cycle and evidence from ocean salinity: A synthesis review.Annals of the New York Academy of Sciences,1472, 76–94,https://doi.org/10.1111/nyas.14354.
Zika, J. D., N. Skliris, A. T. Blaker, R. Marsh, A. J. G. Nurser, and S. A. Josey, 2018: Improved estimates of water cycle change from ocean salinity: The key role of ocean warming.Environmental Research Letters,13, 074036,https://doi.org/10.1088/1748-9326/aace42.
Acknowledgements
The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant Nos. 42122046 and 42076202) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402). NCAR is sponsored by the US National Science Foundation. The efforts of Dr. Fasullo in this work were supported by NASA Awards 80NSSC17K0565 and 80NSSC22K0046, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282.
The efforts of Dr. A. MISHONOV were supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland). The IAP/CAS data are available athttp://www.ocean.iap.ac.cn/ andhttps://msdc.qdio.ac.cn. The NCEI/NOAA data are available athttps://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content. This study has been conducted using also E.U. Copernicus Marine Service Information (https://marine.copernicus.eu/) for the Mediterranean OHC estimate. G. Li is supported by the Young Talent Support Project of Guangzhou Association for Science and Technology.
Author information
Authors and Affiliations
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Lijing Cheng, Jiang Zhu & Viktor Gouretski
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
Lijing Cheng, Jiang Zhu, Fan Wang, Yuanlong Li & Bin Zhang
University of St. Thomas, School of Engineering, Minnesota, 55105, USA
John Abraham
National Center for Atmospheric Research, Boulder, Colorado, 80307, USA
Kevin E. Trenberth & John Fasullo
University of Auckland, Auckland, New Zealand
Kevin E. Trenberth
National Oceanic and Atmospheric Administration, National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
Tim Boyer, Ricardo Locarnini, Alexey Mishonov & Jim Reagan
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
Michael E. Mann
Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
Fan Wang, Yuanlong Li & Bin Zhang
National Marine Environmental Forecasting Center, Ministry of Natural Resources of China, Beijing, 100081, China
Fujiang Yu, Liying Wan, Xingrong Chen & Licheng Feng
College of Oceanography, Hohai University, Nanjing, 210098, China
Xiangzhou Song
National Marine Data and Information Service, Tianjin, 300171, China
Yulong Liu
Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S. Teresa Research Center, Lerici, 19032, Italy
Franco Reseghetti
Istituto Nazionale di Geofisica e Vulcanologia, Sede di Bologna, Bologna, 40128, Italy
Simona Simoncelli
South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
Gengxin Chen
ESSIC/CISESS-MD, University of Maryland, College Park, MD, College Park, Maryland, 20740, USA
Alexey Mishonov
Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, PRC, Guangzhou, 510611, China
Guancheng Li
- Lijing Cheng
Search author on:PubMed Google Scholar
- John Abraham
Search author on:PubMed Google Scholar
- Kevin E. Trenberth
Search author on:PubMed Google Scholar
- John Fasullo
Search author on:PubMed Google Scholar
- Tim Boyer
Search author on:PubMed Google Scholar
- Michael E. Mann
Search author on:PubMed Google Scholar
- Jiang Zhu
Search author on:PubMed Google Scholar
- Fan Wang
Search author on:PubMed Google Scholar
- Ricardo Locarnini
Search author on:PubMed Google Scholar
- Yuanlong Li
Search author on:PubMed Google Scholar
- Bin Zhang
Search author on:PubMed Google Scholar
- Fujiang Yu
Search author on:PubMed Google Scholar
- Liying Wan
Search author on:PubMed Google Scholar
- Xingrong Chen
Search author on:PubMed Google Scholar
- Licheng Feng
Search author on:PubMed Google Scholar
- Xiangzhou Song
Search author on:PubMed Google Scholar
- Yulong Liu
Search author on:PubMed Google Scholar
- Franco Reseghetti
Search author on:PubMed Google Scholar
- Simona Simoncelli
Search author on:PubMed Google Scholar
- Viktor Gouretski
Search author on:PubMed Google Scholar
- Gengxin Chen
Search author on:PubMed Google Scholar
- Alexey Mishonov
Search author on:PubMed Google Scholar
- Jim Reagan
Search author on:PubMed Google Scholar
- Guancheng Li
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toLijing Cheng.
Additional information
Article Highlights
• In 2022, the global ocean was the hottest ever recorded by humans.
• The upper 2000 m salinity-contrast index, a quantification of the “salty gets saltier—fresh gets fresher” pattern, also reached its highest level on record in 2022.
• Global upper-ocean stratification continued its increasing trend in 2022 and was among the top seven on record.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source, plus a link to the Creative Commons license, and indications of any changes made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and intended use is not permitted by statutory regulation or exceeds the permitted use, the user will need to obtain permission directly from the copyright holder. To view a copy of this license, visithttp://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cheng, L., Abraham, J., Trenberth, K.E.et al. Another Year of Record Heat for the Oceans.Adv. Atmos. Sci.40, 963–974 (2023). https://doi.org/10.1007/s00376-023-2385-2
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Key words
关键词
Profiles
- Alexey MishonovView author profile
