Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Diving capabilities of diving petrels

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In striking contrast to the general increase in diving ability with body mass in seabirds, amongst the Procellariiformes, the deepest dives appear to be by the smallest species. Here, we use recently developed, miniaturized time depth recorders to provide the first accurate measurement of dive depth and duration in two small Procellariiformes: Common (Pelecanoides urinatrix) and South Georgian diving petrel (P. georgicus), and compare their diving performance in relation to body mass with that of 58 seabirds from four orders. The 20 common and six South Georgia diving petrels in our study dived to considerable depths and for long periods (respective mean ± SD of 10.5 ± 4.6 and 18.1 ± 3.6 m, and 36.4 ± 9.1 and 44.2 ± 5.9 s). In relation to body mass, these dives are closely comparable to those of small alcids, which are considered to be diving specialists, and much greater than in closely related petrels. Previous work has shown that diving petrels and small alcids share a number of convergent morphological traits; our data reveal these are manifested in terms of diving ability.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Bocher P, Cherel Y, Hobson KA (2000a) Complete trophic segregation between South Georgian and common diving petrels during breeding at Iles Kerguelen. Mar Ecol Prog Ser 208:249–264

    Article  Google Scholar 

  • Bocher P, Labidoire B, Cherel Y (2000b) Maximum dive depths of common diving petrels (Pelecanoides urinatrix) during the annual cycle at Mayes Island, Kerguelen. J Zool 251:517–524

    Article  Google Scholar 

  • Brischoux F, Bonnet X, Cook TR, Shine R (2008) Allometry of diving capacities: ectothermy vs. endothermy. J Evol Biol 21:324–329

    CAS PubMed  Google Scholar 

  • Burger AE, Wilson RP (1988) Capillary-tube depth gauges for diving animals: an assessment of their accuracy and applicability. J Field Ornithol 59:345–354

    Google Scholar 

  • Butler PJ, Jones DR (1982) The comparative physiology of diving. Adv Comp Physiol Biochem 8:179–364

    Article CAS PubMed  Google Scholar 

  • Chastel O (1994) Maximum diving depths of common diving petrelsPelecanoides urinatrix at Kerguelen Islands. Polar Biol 14:211–213

    Article  Google Scholar 

  • Chastel O, Bried J (1996) Diving ability of Blue Petrels and Thin-billed Prions. Condor 98:627–629

    Article  Google Scholar 

  • Cherel Y, Bocher P, Trouvé C, Weimerskirch H (2002a) Diet and feeding ecology of blue petrelsHalobaena caerulea at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:283–299

    Article  Google Scholar 

  • Cherel Y, Bocher P, De Broyer C, Hobson K (2002b) Food and feeding ecology of the sympatric thin-billedPachyptila belcheri and AntarcticP. desolata prions at Iles Kerguelen. Mar Ecol Prog Ser 228:263–281

    Article  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world. Volume 1 ostrich to ducks. Lynx Editions, Barcelona

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1996) Handbook of the birds of the world. Volume 3 hoatzin to auks. Lynx Editions, Barcelona

    Google Scholar 

  • Elliott KH, Gaston AJ (2009) Accuracy of depth recorders. Waterbirds 32:183–191

    Article  Google Scholar 

  • Halsey LG, Butler PJ (2006) Optimal diving behaviour and respiratory gas exchange in birds. Respir Physiol Neurobiol 154:268–283

    Article CAS PubMed  Google Scholar 

  • Halsey LG, Butler PJ, Blackburn TM (2006) A phylogenetic analysis of the allometry of diving. Am Nat 167:276–287

    Article PubMed  Google Scholar 

  • Harding AMA, Egevang C, Walkusz W, Merkel F, Blanc S, Grémillet D (2009) Estimating prey capture rates of a planktivorous seabird, the little auk (Alle alle), using diet, diving behaviour, and energy consumption. Polar Biol 32:785–796

    Article  Google Scholar 

  • Kato A, Watanuki Y, Naito Y (2003) Foraging behaviour of chick-rearing rhinoceros aukletsCerorhinca monocerata at Teuri Island, Japan, determined by acceleration-depth recording micro data loggers. J Avian Biol 34:282–287

    Article  Google Scholar 

  • Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11:152–166

    Article CAS PubMed  Google Scholar 

  • Luque S (2007) Behaviour analysis in R. R news 7:8–14

    Google Scholar 

  • Luque S, Fried R (2011) Recursive filtering for zero offset correction of diving depth time series with GNU R package diveMove. PLoS ONE 6:e15850

    Article CAS PubMed Central PubMed  Google Scholar 

  • Navarro J, Votier SC, Aguzzi J, Chiesa JJ, Forero MG, Phillips RA (2013) Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8:e62897

    Article CAS PubMed Central PubMed  Google Scholar 

  • Ortega-Jiménez VM, Álvarez-Borrego S (2010) Alcid feathers wet on one side impede air outflow without compromising resistance to water penetration. Condor 112:172–176

    Article  Google Scholar 

  • Prince P (1980) The food and feeding ecology of blue petrel (Halobaena caerulea) and dove prion (Pachyptila desolata). J Zool 190:59–76

    Article  Google Scholar 

  • Reid K, Croxall J, Edwards T, Hill H, Prince P (1997) Diet and feeding ecology of the diving petrelsPelecanoides georgicus andP. urinatrix at South Georgia. Polar Biol 17:17–24

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A (2012) The Penguiness book. World Wide Web electronic publication (http:/penguinessbook.scarmarbin.be/), version 2.0, March 2012,http://penguinessbook.scarmarbin.be/

  • Ropert-Coudert Y, Knott N, Chiaradia A, Kato A (2007) How do different data logger sizes and attachment positions affect the diving behaviour of little penguins? Deep-Sea Res Pt II 54:415–423

    Article  Google Scholar 

  • Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358

    Article  Google Scholar 

  • Thaxter CB, Wanless S, Daunt F, Harris MP, Benvenuti S, Watanuki Y, Grémillet D, Hamer KC (2010) Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills. J Exp Biol 213:1018–1025

    Article CAS PubMed  Google Scholar 

  • Tremblay Y, Cherel Y, Oremus M, Tveraa T, Chastel O (2003) Unconventional ventral attachment of time-depth recorders as a new method for investigating time budget and diving behaviour of seabirds. J Exp Biol 206:1929–1940

    Article PubMed  Google Scholar 

  • Warham J (1977) Wing loadings, wing shapes, and flight capabilities of Procellariiformes. New Zeal J Zool 4:73–83

    Article  Google Scholar 

  • Watanabe YY, Sato K, Watanuki Y, Takahashi A, Mitani Y, Amano M, Aoki K, Narazaki T, Iwata T, Minamikawa S, Miyazaki N (2011) Scaling of swim speed in breath-hold divers. J Anim Ecol 80:57–68

    Article PubMed  Google Scholar 

  • Watanuki Y, Burger AE (1999) Body mass and dive duration in alcids and penguins. Can J Zool 77:1838–1842

    Article  Google Scholar 

  • Wilson RP, Hustler K, Ryan PG, Burger AE, Noldeke EC (1992) Diving birds in cold water: do Archimedes and Boyle determine energetic costs? Am Nat 140:179–200

    Article  Google Scholar 

  • Zavalaga C, Jahncke J (1997) Maximum dive depths of the Peruvian diving-petrel. Condor 99:1002–1004

    Article  Google Scholar 

Download references

Acknowledgments

We extend special thanks to Ruth Brown, Stacey Adlard and Jaume Forcada for their fieldwork support and to Norman Ratcliffe and Akiko Kato for their help with dive analyses. The NERC Antarctic Funding Initiative provided financial and logistic support. JN was supported by a postdoctoral contract of the Juan de la Cierva program (Spanish-MINECO). This study is part of the British Antarctic Survey Polar Science for Planet Earth Programme, funded by The Natural Environment Research Council.

Author information

Authors and Affiliations

  1. Institut de Ciències del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003, Barcelona, Spain

    Joan Navarro

  2. Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK

    Stephen C. Votier

  3. British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK

    Richard A. Phillips

Authors
  1. Joan Navarro
  2. Stephen C. Votier
  3. Richard A. Phillips

Corresponding author

Correspondence toJoan Navarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

About this article

Profiles

  1. Joan NavarroView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp