Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

IL-17E, a proinflammatory cytokine, has antitumor efficacy against several tumor types in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Interleukin-17E (IL-17E) belongs to a novel family of cytokines that possess significant homology to IL-17. IL-17E has potent inflammatory effects in vitro and in vivo. Overexpression of IL-17E in mice results in a T helper-2 (Th2)-type immune response, which includes the expansion of eosinophils through the production of IL-5, and elevated gene expression of IL-4 and IL-13 in multiple tissues. In this study, we show that IL-17E has antitumor activity in vivo, a previously unrecognized function of IL-17E. Antitumor efficacy of IL-17E was examined in a variety of human tumor xenograft models, including melanoma, breast, lung, colon, and pancreatic cancers. Injection of recombinant IL-17E every other day resulted in significant antitumor activity in these tumor models. In addition, the combination of IL-17E with chemotherapy or immunotherapy agents showed an enhanced antitumor efficacy in human tumor xenograft models in mice as compared to either agent alone. Antitumor activity was demonstrated using different routes of administration, including intraperitoneal, intravenous, and subcutaneous injection. Anticancer activity was shown for both mouse and human forms of IL-17E, which have a high degree of sequence identity. Tumor-bearing mice treated with IL-17E showed a significant increase in serum levels of IL-5 and increased numbers of eosinophils in peripheral blood compared to the control group. Spleens isolated from IL-17E-treated mice showed a significant increase in eosinophils that correlated with antitumor activity of IL-17E in a dose–response manner. Finally, we demonstrate that B cells are necessary for IL-17E-mediated antitumor activity and that IL-17E was found to activate signaling pathways in B cells in vitro. Taken together, these data demonstrate that IL-17E has antitumor activity in vivo, and support further investigation of the potential clinical use of IL-17E as an anticancer agent.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Chapter© 2016

References

  1. Aggarwal S, Gurney AL (2002) IL-17: prototype member of an emerging cytokine family. J Leukoc Biol 71:1–8

    CAS PubMed  Google Scholar 

  2. Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, Brieland JK, Zurawski SM, Chapman RW, Zurawski G, Coffman RL (2002) New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 169:443–453

    CAS PubMed  Google Scholar 

  3. Dong C (2008) Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunol Rev 226:80–86

    Article CAS PubMed  Google Scholar 

  4. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9:556–567

    Article CAS PubMed  Google Scholar 

  5. Barlow JL, McKenzie AN (2009) IL-25: a key requirement for the regulation of type-2 immunity. Biofactors 35:178–182

    Article CAS PubMed  Google Scholar 

  6. Pan G, French D, Mao W, Maruoka M, Risser P, Lee J, Foster J, Aggarwal S, Nicholes K, Guillet S, Schow P, Gurney AL (2001) Forced expression of mouse IL-17E induces growth retardation, jaundice, a Th2-biased response, and multiorgan inflammation in mice. J Immunol 167:6559–6567

    CAS PubMed  Google Scholar 

  7. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995

    Article CAS PubMed  Google Scholar 

  8. Ikeda K, Nakajima H, Suzuki K, Kagami S, Hirose K, Suto A, Saito Y, Iwamoto I (2003) Mast cells produce interleukin-25 upon Fc epsilon RI-mediated activation. Blood 101:3594–3596

    Article CAS PubMed  Google Scholar 

  9. Owyang AM, Zaph C, Wilson EH, Guild KJ, McClanahan T, Miller HR, Cua DJ, Goldschmidt M, Hunter CA, Kastelein RA, Artis D (2006) Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 203:843–849

    Article PubMed  Google Scholar 

  10. Feng N, Jin H, Wang M, Du C, Wright JA, Young AH (2003) Antitumor activity of Virulizin, a novel biological response modifier (BRM) in a panel of human pancreatic cancer and melanoma xenografts. Cancer Chemother Pharmacol 51:247–255

    CAS PubMed  Google Scholar 

  11. Du C, Feng N, Jin H, Wang M, Wright JA, Young AH (2003) Preclinical efficacy of Virulizin in human breast, ovarian and prostate tumor models. Anticancer Drugs 14:289–294

    Article CAS PubMed  Google Scholar 

  12. Du C, Feng N, Jin H, Lee V, Wang M, Wright JA, Young AH (2003) Macrophages play a critical role in the anti-tumor activity of virulizin. Int J Oncol 23:1341–1346

    CAS PubMed  Google Scholar 

  13. Cao MY, Lee Y, Feng N, Li H, Du C, Miao D, Li J, Lee V, Jin H, Wang M, Gu X, Wright JA, Young AH (2005) NK cell activation and tumor infiltration are involved in the antitumor mechanism of Virulizin. Cancer Immunol Immunother 54:229–242

    Article CAS PubMed  Google Scholar 

  14. Benatar T, Cao MY, Lee Y, Li H, Feng N, Gu X, Lee V, Jin H, Wang M, Der S, Lightfoot J, Wright JA, Young AH (2008) Virulizin induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother 57:1757–1769

    Article CAS PubMed  Google Scholar 

  15. Welch DR, Bisi JE, Miller BE, Conaway D, Seftor EA, Yohem KH, Gilmore LB, Seftor RE, Nakajima M, Hendrix MJ (1991) Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int J Cancer 47:227–237

    Article CAS PubMed  Google Scholar 

  16. Wehrend A, Hetzel U, Huchzermeyer S, Klein C, Bostedt H (2004) Sirius red is able to selectively stain eosinophil granulocytes in bovine, ovine and equine cervical tissue. Anat Histol Embryol 33:180–182

    Article CAS PubMed  Google Scholar 

  17. Cao MY, Lee Y, Feng NP, Al-Qawasmeh RA, Viau S, Gu XP, Lau L, Jin H, Wang M, Vassilakos A, Wright JA, Young AH (2004) NC381, a novel anticancer agent, arrests the cell cycle in G0–G1 and inhibits lung tumor cell growth in vitro and in vivo. J Pharmacol Exp Ther 308:538–546

    Article CAS PubMed  Google Scholar 

  18. Kim MR, Manoukian R, Yeh R, Silbiger SM, Danilenko DM, Scully S, Sun J, DeRose ML, Stolina M, Chang D, Van GY, Clarkin K, Nguyen HQ, Yu YB, Jing S, Senaldi G, Elliott G, Medlock ES (2002) Transgenic overexpression of human IL-17E results in eosinophilia, B-lymphocyte hyperplasia, and altered antibody production. Blood 100:2330–2340

    Article CAS PubMed  Google Scholar 

  19. Roboz GJ, Rafii S (1999) Interleukin-5 and the regulation of eosinophil production. Curr Opin Hematol 6:164–168

    Article CAS PubMed  Google Scholar 

  20. Tian E, Sawyer JR, Largaespada DA, Jenkins NA, Copeland NG, Shaughnessy JD Jr (2000) Evi27 encodes a novel membrane protein with homology to the IL17 receptor. Oncogene 19:2098–2109

    Article CAS PubMed  Google Scholar 

  21. Tato CM, Laurence A, O’Shea JJ (2006) Helper T cell differentiation enters a new era: le roi est mort; vive le roi!. J Exp Med 203:809–812

    Article CAS PubMed  Google Scholar 

  22. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203:1105–1116

    Article CAS PubMed  Google Scholar 

  23. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article CAS PubMed  Google Scholar 

  24. Goswami S, Angkasekwinai P, Shan M, Greenlee KJ, Barranco WT, Polikepahad S, Seryshev A, Song LZ, Redding D, Singh B, Sur S, Woodruff P, Dong C, Corry DB, Kheradmand F (2009) Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat Immunol 10:496–503

    Article CAS PubMed  Google Scholar 

  25. Lotfi R, Lee JJ, Lotze MT (2007) Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30:16–28

    Article CAS PubMed  Google Scholar 

  26. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, Robinson DS, Hosken N, Ferlin WG, Wu X, Soto H, O’Garra A, Howard MC, Coffman RL (1999) Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). J Leukoc Biol 65:846–853

    CAS PubMed  Google Scholar 

  27. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS, Goddard AD, Yansura DG, Vandlen RL, Wood WI, Gurney AL (2001) IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 276:1660–1664

    Article CAS PubMed  Google Scholar 

  28. Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA, Anders PM, Tocker JE, Comeau MR, Budelsky AL (2008) Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol 181:4299–4310

    CAS PubMed  Google Scholar 

  29. Takatsu K, Kouro T, Nagai Y (2009) Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 101:191–236

    Article CAS PubMed  Google Scholar 

  30. Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth MJ, Parish CR (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178:4222–4229

    CAS PubMed  Google Scholar 

  31. Fernández-Aceñero MJ, Galindo-Gallego M, Sanz J, Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88:1544–1548

    Article PubMed  Google Scholar 

  32. Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brünner N, Moesgaard F (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189:487–495

    Article CAS PubMed  Google Scholar 

  33. Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26:1419–1424

    PubMed  Google Scholar 

  34. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautès-Fridman C, Fossiez F, Haicheur N, Fridman WH, Tartour E (2002) Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99:2114–2121

    Article CAS PubMed  Google Scholar 

  35. Kryczek I, Wei S, Szeliga W, Vatan L, Zou W (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359

    Article CAS PubMed  Google Scholar 

  36. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article CAS PubMed  Google Scholar 

  37. Cirée A, Michel L, Camilleri-Bröet S, Jean Louis F, Oster M, Flageul B, Senet P, Fossiez F, Fridman WH, Bachelez H, Tartour E (2004) Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome). Int J Cancer 112:113–120

    Article PubMed  Google Scholar 

  38. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W (2007) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    CAS PubMed  Google Scholar 

  39. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ (2003) Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56:171–182

    Article CAS PubMed  Google Scholar 

  40. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149

    Article CAS PubMed  Google Scholar 

  41. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K, Gattinoni L, Wrzesinski C, Hinrichs CS, Kerstann KW, Feigenbaum L, Chan CC, Restifo NP (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373

    Article CAS PubMed  Google Scholar 

  42. Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD, Kastelein RA, Cua DJ (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170

    Article CAS PubMed  Google Scholar 

  43. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    Article CAS PubMed  Google Scholar 

  44. Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659:15–30

    Article CAS PubMed  Google Scholar 

  45. Wong CK, Cheung PF, Ip WK, Lam CW (2005) Interleukin-25-induced chemokines and interleukin-6 release from eosinophils is mediated by p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and nuclear factor-kappaB. Am J Respir Cell Mol Biol 33:186–194

    Article CAS PubMed  Google Scholar 

  46. Maezawa Y, Nakajima H, Suzuki K, Tamachi T, Ikeda K, Inoue J, Saito Y, Iwamoto I (2006) Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling. J Immunol 176:1013–1018

    CAS PubMed  Google Scholar 

  47. Capobianco A, Manfredi AA, Monno A, Rovere-Querini P, Rugarli C (2008) Melanoma and lymphoma rejection associated with eosinophil infiltration upon intratumoral injection of dendritic and NK/LAK cells. J Immunother 31:458–465

    Article PubMed  Google Scholar 

  48. Immunodeficient Models Datasheet, Charles River Laboratories (http://www.criver.com/flex_content_area/documents/rm_rm_d_immunodeficient_models.pdf)

  49. Puxeddu I, Alian A, Piliponsky AM, Ribatti D, Panet A, Levi-Schaffer F (2005) Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol 37:628–636

    Article CAS PubMed  Google Scholar 

  50. Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F (2005) Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol 116:531–536

    Article CAS PubMed  Google Scholar 

Download references

Author information

Author notes
  1. Tania Benatar

    Present address: Sunnybrook and Health Sciences Centre, Molecular and Cellular Biology, 2075 Bayview Avenue, S Wing, Room S224, Toronto, ON, M4N 3M5, Canada

  2. Ming Y. Cao

    Present address: BGTD, Health Canada, 100 Eglantine Dr., Room 1452-H, A/L 0601C, Tunny’s Pasture, Ottawa, ON, K1A 0K9, Canada

Authors and Affiliations

  1. Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON, M9W 4Z7, Canada

    Tania Benatar, Ming Y. Cao, Yoon Lee, Jeff Lightfoot, Ningping Feng, Xiaoping Gu, Vivian Lee, Hongnan Jin, Ming Wang, Jim A. Wright & Aiping H. Young

Authors
  1. Tania Benatar

    You can also search for this author inPubMed Google Scholar

  2. Ming Y. Cao

    You can also search for this author inPubMed Google Scholar

  3. Yoon Lee

    You can also search for this author inPubMed Google Scholar

  4. Jeff Lightfoot

    You can also search for this author inPubMed Google Scholar

  5. Ningping Feng

    You can also search for this author inPubMed Google Scholar

  6. Xiaoping Gu

    You can also search for this author inPubMed Google Scholar

  7. Vivian Lee

    You can also search for this author inPubMed Google Scholar

  8. Hongnan Jin

    You can also search for this author inPubMed Google Scholar

  9. Ming Wang

    You can also search for this author inPubMed Google Scholar

  10. Jim A. Wright

    You can also search for this author inPubMed Google Scholar

  11. Aiping H. Young

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toYoon Lee orJeff Lightfoot.

Rights and permissions

About this article

Cite this article

Benatar, T., Cao, M.Y., Lee, Y.et al. IL-17E, a proinflammatory cytokine, has antitumor efficacy against several tumor types in vivo.Cancer Immunol Immunother59, 805–817 (2010). https://doi.org/10.1007/s00262-009-0802-8

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp