- Laurine Andre ORCID:orcid.org/0000-0002-7559-80141,2,
- Adeline Gallini1,2,
- François Montastruc1,3,
- Jean-Louis Montastruc1,3,
- Antoine Piau4,
- Maryse Lapeyre-Mestre1 &
- …
- Virginie Gardette1,2
1200Accesses
13Altmetric
Abstract
Purpose
With increasing age, adults are often exposed to anticholinergic drugs and are prone to potential adverse drug reaction, among which cognitive impairment. If the short-term cognitive effects of anticholinergic drugs are well established, their long-term cognitive effects have less been studied.
Objective
To provide a systematic review of longitudinal studies which assessed the effect of anticholinergic exposure on cognition in individuals over 50 years.
Materials
We searched the MEDLINE database for studies with a minimal 6-month follow-up, assessing anticholinergic exposure through a biological measure or a clinical list and reporting at least one cognitive outcome. We used the modified Newcastle-Ottawa scale and additional criteria regarding the anticholinergic exposure to assess studies’ methodological quality. Given the heterogeneity of the studies, we performed a systematic review.
Results
Among the 1574 references retrieved, 25 studies were included. Anticholinergic medications were mostly defined through the Anticholinergic Cognitive Burden Scale (n = 14/25). Six studies evaluated baseline drug collection, 14 used longitudinal aggregated measure, and 5 multiple drug exposure measures over time. Seventeen studies assessed anticholinergic burden. Cognitive function was assessed by mild cognitive impairment/dementia incidence (n = 15) or neuropsychological tests (n = 14). Most studies were of poor quality and retrieved discordant results. However, studies with good quality (n = 4) suggested a relationship between anticholinergic drug exposure and/or burden and cognitive function.
Conclusion
Our review suggests a deleterious effect of anticholinergic exposure on mid/long-term cognitive function but should be confirmed in studies with improved methodology. Meanwhile, prescription of anticholinergic drugs should remain cautious.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.

Similar content being viewed by others
References
Mintzer J, Burns A (2000) Anticholinergic side-effects of drugs in elderly people. J R Soc Med 93:457–462
McNeely SS, Bhattacharya R, Aparasu RR (2013) Prevalence of anticholinergic use among older home health patients. J Clin Nurs 22:285–288
Lu W-H, Wen Y-W, Chen L-K, Hsiao FY (2015) Effect of polypharmacy, potentially inappropriate medications and anticholinergic burden on clinical outcomes: a retrospective cohort study. CMAJ 187:E130–E137
Marcum ZA, Perera S, Thorpe JM, Switzer GE, Gray SL, Castle NG, Strotmeyer ES, Simonsick EM, Bauer DC, Shorr RI, Studenski SA, Hanlon JT, Health ABC Study, USA (2015) Anticholinergic use and recurrent falls in community-dwelling older adults: findings from the health ABC study. Ann Pharmacother 49:1214–1221
Kachru N, Carnahan RM, Johnson ML, Aparasu RR (2015) Potentially inappropriate anticholinergic medication use in community-dwelling older adults: a national cross-sectional study. Drugs Aging 32:379–389
Lechevallier-Michel N, Molimard M, Dartigues J-F, Fabrigoule C, Fourrier-Reglat A (2005) Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID study. Br J Clin Pharmacol 59:143–151
Flicker C, Ferris SH, Serby M (1992) Hypersensitivity to scopolamine in the elderly. Psychopharmacology 107:437–441
Molchan SE, Martinez RA, Hill JL, Weingartner HJ, Thompson K, Vitiello B, Sunderland T (1992) Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Brain Res Rev 17:215–226
Ray PG, Meador KJ, Loring DW et al (1992) Central anticholinergic hypersensitivity in aging. J Geriatr Psychiatry Neurol 5:72–77
Commissaris CJ, Ponds RW, Jolles J (1998) Subjective forgetfulness in a normal Dutch population: possibilities for health education and other interventions. Patient Educ Couns 34:25–32
Derouesné C, Lacomblez L, Thibault S, Leponcin M (1999) Memory complaints in young and elderly subjects. Int J Geriatr Psychiatry 14:291–301
Tune L, Coyle JT (1980) Serum levels of anticholinergic drugs in treatment of acute extrapyramidal side effects. Arch Gen Psychiatry 37:293–297
Carnahan RM, Lund BC, Perry PJ, Pollock BG, Culp KR (2006) The anticholinergic drug scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J Clin Pharmacol 46:1481–1486
Rudolph JL, Salow MJ, Angelini MC, McGlinchey R (2008) The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med 168:508–513
Boustani M, Campbell N, Munger S, Maidment I, Fox C (2008) Impact of anticholinergics on the aging brain: a review and practical application. Aging Health 4(3):311–320
Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, Kirshner MA, Sorisio DA, Bies RR, Gharabawi G (2008) Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc 56:1333–1341
Durán CE, Azermai M, Vander Stichele RH (2013) Systematic review of anticholinergic risk scales in older adults. Eur J Clin Pharmacol 69:1485–1496
Han L, Agostini JV, Allore HG (2008) Cumulative anticholinergic exposure is associated with poor memory and executive function in older men. J Am Geriatr Soc 56:2203–2210
Hilmer SN, Mager DE, Simonsick EM, Cao Y, Ling SM, Windham BG, Harris TB, Hanlon JT, Rubin SM, Shorr RI, Bauer DC, Abernethy DR (2007) A drug burden index to define the functional burden of medications in older people. Arch Intern Med 167:781–787
Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D (2010) Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry 81:160–165
Ancelin ML, Artero S, Portet F, Dupuy AM, Touchon J, Ritchie K (2006) Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ 332:455–459
Nebes RD, Pollock BG, Meltzer CC, Saxton JA, Houck PR, Halligan EM, DeKosky ST (2005) Serum anticholinergic activity, white matter hyperintensities, and cognitive performance. Neurology 65:1487–1489
Cao Y-J, Mager DE, Simonsick EM, Hilmer SN, Ling SM, Windham BG, Crentsil V, Yasar S, Fried LP, Abernethy DR (2008) Physical and cognitive performance and burden of anticholinergics, sedatives, and ACE inhibitors in older women. Clin Pharmacol Ther 83:422–429
Cancelli I, Gigli GL, Piani A, Zanchettin B, Janes F, Rinaldi A, Valente M (2008) Drugs with anticholinergic properties as a risk factor for cognitive impairment in elderly people: a population-based study. J Clin Psychopharmacol 28:654–659
Uusvaara J, Pitkala KH, Kautiainen H, Tilvis RS, Strandberg TE (2013) Detailed cognitive function and use of drugs with anticholinergic properties in older people: a community-based cross-sectional study. Drugs Aging 30:177–182
Sittironnarit G, Ames D, Bush AI, Faux N, Flicker L, Foster J, Hilmer S, Lautenschlager NT, Maruff P, Masters CL, Martins RN, Rowe C, Szoeke C, Ellis KA (2011) Effects of anticholinergic drugs on cognitive function in older Australians: results from the AIBL study. Dement Geriatr Cogn Disord 31:173–178
Lampela P, Lavikainen P, Garcia-Horsman JA, Bell JS, Huupponen R, Hartikainen S (2013) Anticholinergic drug use, serum anticholinergic activity, and adverse drug events among older people: a population-based study. Drugs Aging 30:321–330
Cruce R, Vosoughi R, Freedman MS (2012) Cognitive impact of anticholinergic medication in MS: adding insult to injury? Mult Scler Relat Disord 1:156–161
Merchant RA, Li B, Yap K-B, Ng TP (2009) Use of drugs with anticholinergic effects and cognitive impairment in community-living older persons. Age Ageing 38:105–108
Campbell N, Boustani M, Limbil T et al (2009) The cognitive impact of anticholinergics: a clinical review. Clin Interv Aging 4:225–233
Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, available from:http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 5 October 2018)
Campbell NL, Boustani MA, Lane KA, Gao S, Hendrie H, Khan BA, Murrell JR, Unverzagt FW, Hake A, Smith-Gamble V, Hall K (2010) Use of anticholinergics and the risk of cognitive impairment in an African American population. Neurology 75:152–159
Carrière I, Fourrier-Reglat A, Dartigues J-F, Rouaud O, Pasquier F, Ritchie K, Ancelin ML (2009) Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med 169:1317–1324
Chuang Y-F, Elango P, Gonzalez CE, Thambisetty M (2017) Midlife anticholinergic drug use, risk of Alzheimer’s disease, and brain atrophy in community-dwelling older adults. Alzheimers Dement (N Y) 3:471–479
Fox C, Richardson K, Maidment ID, Savva GM, Matthews FE, Smithard D, Coulton S, Katona C, Boustani MA, Brayne C (2011) Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc 59:1477–1483
Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, Yu O, Crane PK, Larson EB (2015) Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med 175:401–407
Jamsen KM, Gnjidic D, Hilmer SN, Ilomäki J, le Couteur DG, Blyth FM, Handelsman DJ, Naganathan V, Waite LM, Cumming RG, Bell JS (2017) Drug Burden Index and change in cognition over time in community-dwelling older men: the CHAMP study. Ann Med 49:157–164
Jessen F, Kaduszkiewicz H, Daerr M et al (2010) Anticholinergic drug use and risk for dementia: target for dementia prevention. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S111–S115
Kashyap M, Belleville S, Mulsant BH, Hilmer SN, Paquette A, Tu LM, Tannenbaum C (2014) Methodological challenges in determining longitudinal associations between anticholinergic drug use and incident cognitive decline. J Am Geriatr Soc 62:336–341
Koyama A, Steinman M, Ensrud K, Hillier TA, Yaffe K (2013) Ten-year trajectory of potentially inappropriate medications in very old women: importance of cognitive status. J Am Geriatr Soc 61:258–263
Koyama A, Steinman M, Ensrud K, Hillier TA, Yaffe K (2014) Long-term cognitive and functional effects of potentially inappropriate medications in older women. J Gerontol A Biol Sci Med Sci 69:423–429
Low L-F, Anstey KJ, Sachdev P (2009) Use of medications with anticholinergic properties and cognitive function in a young-old community sample. Int J Geriatr Psychiatry 24:578–584
Papenberg G, Bäckman L, Fratiglioni L, Laukka EJ, Fastbom J, Johnell K (2017) Anticholinergic drug use is associated with episodic memory decline in older adults without dementia. Neurobiol Aging 55:27–32
Risacher SL, McDonald BC, Tallman EF et al (2016) Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively Normal older adults. JAMA Neurol 73:721–732
Ritchie K, Ancelin M-L, Beaino E, Portet F, Brickman AM, Dartigues JF, Tzourio C, Dupuy AM, Ritchie CW, Berr C, Artero S (2010) Retrospective identification and characterization of mild cognitive impairment from a prospective population cohort. Am J Geriatr Psychiatry 18:692–700
Shah RC, Janos AL, Kline JE, Yu L, Leurgans SE, Wilson RS, Wei P, Bennett DA, Heilman KM, Tsao JW (2013) Cognitive decline in older persons initiating anticholinergic medications. PLoS One 8:e64111
Bottiggi KA, Salazar JC, Yu L, Caban-Holt AM, Mendiondo MS, Schmitt FA, Ryan M (2006) Long-term cognitive impact of anticholinergic medications in older adults. Am J Geriatr Psychiatry 14:980–984
Richardson K, Fox C, Maidment I et al (2018) Anticholinergic drugs and risk of dementia: case-control study. BMJ 361:k1315
Campbell NL, Perkins AJ, Bradt P, Perk S, Wielage RC, Boustani MA, Ng DB (2016) Association of Anticholinergic Burden with cognitive impairment and health care utilization among a diverse ambulatory older adult population. Pharmacotherapy 36:1123–1131
Campbell NL, Lane KA, Gao S et al (2018) Anticholinergics influence transition from normal cognition to mild cognitive impairment in older adults in primary care. Pharmacotherapy 13:1191
Cruz-Oliver DM, Malmstrom TK, Roegner M et al (2014) Cognitive deficit reversal as shown by changes in the Veterans Affairs Saint Louis University Mental Status (SLUMS) examination scores 7.5 years later. J Am Med Dir Assoc 15:687.e5–10
Hsu W-H, Wen Y-W, Chen L-K, Hsiao FY (2017) Comparative associations between measures of anti-cholinergic burden and adverse clinical outcomes. Ann Fam Med 15:561–569
Wu Y-H, Wang C-J, Hung C-H, Chen LY, Lin MH, Wang PN, Chen LK (2017) Association between using medications with anticholinergic properties and short-term cognitive decline among older men: a retrospective cohort study in Taiwan. Geriatr Gerontol Int 17(Suppl 1):57–64
Cai X, Campbell N, Khan B, Callahan C, Boustani M (2013) Long-term anticholinergic use and the aging brain. Alzheimers Dement 9:377–385
Han L, McCusker J, Cole M, Abrahamowicz M, Primeau F, Élie M (2001) Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med 161:1099–1105
Richardson K, Bennett K, Maidment ID, Fox C, Smithard D, Kenny RA (2015) Use of medications with anticholinergic activity and self-reported injurious falls in older community-dwelling adults. J Am Geriatr Soc 63:1561–1569
Moride Y, Abenhaim L, Yola M et al (1994) Evidence of the depletion of susceptibles effect in non-experimental pharmacoepidemiologic research. J Clin Epidemiol 47:731–737
Naples JG, Marcum ZA, Perera S, Gray SL, Newman AB, Simonsick EM, Yaffe K, Shorr RI, Hanlon JT, the Health, Aging and Body Composition Study (2015) Concordance between anticholinergic burden scales. J Am Geriatr Soc 63:2120–2124
Pont LG, Nielen JTH, McLachlan AJ et al (2015) Measuring anticholinergic drug exposure in older community-dwelling Australian men: a comparison of four different measures. Br J Clin Pharmacol 80:1169–1175
Klamer TT, Wauters M, Azermai M, Durán C, Christiaens T, Elseviers M, Vander Stichele R (2017) A novel scale linking potency and dosage to estimate anticholinergic exposure in older adults: the muscarinic acetylcholinergic receptor antagonist exposure scale. Basic Clin Pharmacol Toxicol 120:582–590
Mesulam MM, Volicer L, Marquis JK, Mufson EJ, Green RC (1986) Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann Neurol 19:144–151
Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, Weiner M, Aisen PS, Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Cooperative Study (2014) The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol 71:961–970
Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80:1778–1783
Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563
Sumukadas D, McMurdo MET, Mangoni AA et al (2014) Temporal trends in anticholinergic medication prescription in older people: repeated cross-sectional analysis of population prescribing data. Age Ageing 43:515–521
Acknowledgements
The authors would like to thank Dr. Anne-Bahia Abdeljalil for her writing assistance.
Author information
Authors and Affiliations
UMR INSERM 1027, Université de Toulouse, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
Laurine Andre, Adeline Gallini, François Montastruc, Jean-Louis Montastruc, Maryse Lapeyre-Mestre & Virginie Gardette
Service d’Epidémiologie, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
Laurine Andre, Adeline Gallini & Virginie Gardette
Service de Pharmacologie Médicale et Clinique, Centre Midi-Pyrénées de PharmacoVigilance, Pharmacoépidémiologie et d’Informations sur le Médicament, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
François Montastruc & Jean-Louis Montastruc
Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse (CHU Toulouse), Toulouse, France
Antoine Piau
- Laurine Andre
You can also search for this author inPubMed Google Scholar
- Adeline Gallini
You can also search for this author inPubMed Google Scholar
- François Montastruc
You can also search for this author inPubMed Google Scholar
- Jean-Louis Montastruc
You can also search for this author inPubMed Google Scholar
- Antoine Piau
You can also search for this author inPubMed Google Scholar
- Maryse Lapeyre-Mestre
You can also search for this author inPubMed Google Scholar
- Virginie Gardette
You can also search for this author inPubMed Google Scholar
Contributions
All authors contributed to the writing of the manuscript and approved the final version.
Corresponding author
Correspondence toLaurine Andre.
Ethics declarations
Conflict of interest
Andre Laurine, Gallini Adeline, Montastruc François, Montastruc Jean-Louis, Piau Antoine, Lapeyre-Mestre Maryse, and Gardette Virginie have no conflicts of interest directly relevant to the content of this study.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 104 kb)
Rights and permissions
About this article
Cite this article
Andre, L., Gallini, A., Montastruc, F.et al. Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review.Eur J Clin Pharmacol75, 1631–1644 (2019). https://doi.org/10.1007/s00228-019-02744-8
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative