Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present an efficient quantum algorithm for simulating the evolution of a quantum state for a sparse HamiltonianH over a given timet in terms of a procedure for computing the matrix entries ofH. In particular, whenH acts onn qubits, has at most a constant number of nonzero entries in each row/column, and ||H|| is bounded by a constant, we may select any positive integerk such that the simulation requiresO((log*n)t1+1/2k) accesses to matrix entries ofH. We also show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Shor, P. W.: Algorithms for quantum computation: Discrete logarithms and factoring. In:Proc. 35th Symp. on Foundations of Computer Science, Los Alamitos, CA:IEEE, 1994, pp. 124–134

  2. Grover L. (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328

    Article ADS  Google Scholar 

  3. Kempe J., Kitaev A., Regev O. (2006) The complexity of the local Hamiltonian problem. SIAM J. Computing 35: 1070–1097

    Article MathSciNet  Google Scholar 

  4. Feynman R.P. (1982) Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488

    MathSciNet  Google Scholar 

  5. Lloyd S. (1996) Universal quantum simulators. Science 273: 1073–1078

    Article MathSciNet ADS  Google Scholar 

  6. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In:Proc. 35th Annual ACM Symp. on Theory of Computing, New York:ACM, 2003, pp. 20–29

  7. Childs A., Farhi E., Gutmann S. (2002) An example of the difference between quantum and classical random walks. J. Quant. Inf. Proc. 1, 35–43

    Article MathSciNet  Google Scholar 

  8. Shenvi N., Kempe J., Whaley K.B. (2003) Quantum random-walk search algorithm. Phys. Rev. A 67: 052307

    Article ADS  Google Scholar 

  9. Childs A., Goldstone J. (2004) Spatial search by quantum walk. Phys. Rev. A 70: 022314

    Article MathSciNet ADS  Google Scholar 

  10. Ambainis, A.: Quantum walk algorithm for element distinctness. In:Proc. 45th Symp. on Foundations of Computer Science, Los Alamitos, CA: IEEE, 2004, pp. 22–31

  11. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In:Proc. 16th ACM-SIAM SODA, Philadelphia, PA:SIAM, 2005, pp. 1099–1108

  12. Suzuki M. (1990) Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323

    Article MathSciNet ADS  Google Scholar 

  13. Suzuki M. (1991) General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400–407

    Article MathSciNet ADS  Google Scholar 

  14. Childs A.M. Quantum information processing in continuous time.Ph.D. Thesis, Massachusetts Institute of Technology, 2004

  15. Cole R., Vishkin U. (1986) Deterministic coin tossing with applications to optimal parallel list ranking. Inform. and Control 70, 32–53

    Article MathSciNet  Google Scholar 

  16. Linial N. (1992) Locality in distributed graph algorithms. SIAM J. Comput. 21, 193–201

    Article MathSciNet  Google Scholar 

  17. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Guttman, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk. In:Proc. 35th Annual ACM Symp. on Theory of Computing, New York: ACM, 2003, pp. 59–68

  18. Ahokas, G.: Improved algorithms for approximate quantum Fourier transforms and sparse Hamiltonian simulations.M.Sc. Thesis, University of Calgary, 2004

  19. Beals R., Buhrman H., Cleve R., Mosca M., de Wolf R. (2001) Quantum lower bounds by polynomials. J. ACM 48, 778–797

    Article MathSciNet  Google Scholar 

  20. Farhi E., Goldstone J., Gutmann S., Sipser M. (1998) Limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81: 5442–5444

    Article ADS  Google Scholar 

  21. Nielsen M.A., Chuang I.L., (2000) Quantum Computation and Quantum Information. Cambridge, Cambridge University Press

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, The University of Queensland, Queensland, 4072, Australia

    Dominic W. Berry

  2. Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4, Canada

    Dominic W. Berry, Graeme Ahokas, Richard Cleve & Barry C. Sanders

  3. Department of Computer Science, University of Calgary, Alberta, T2N 1N4, Canada

    Graeme Ahokas & Richard Cleve

  4. School of Computer Science, University of Waterloo, Ontario, N2L 3G1, Canada

    Richard Cleve

  5. Institute for Quantum Computing, University of Waterloo, Ontario, N2L 3G1, Canada

    Richard Cleve

  6. Centre for Quantum Computer Technology, Macquarie University, Sydney, New South Wales, 2109, Australia

    Barry C. Sanders

Authors
  1. Dominic W. Berry
  2. Graeme Ahokas
  3. Richard Cleve
  4. Barry C. Sanders

Additional information

Communicated by M.B. Ruskai

Rights and permissions

About this article

Cite this article

Berry, D.W., Ahokas, G., Cleve, R.et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians.Commun. Math. Phys.270, 359–371 (2007). https://doi.org/10.1007/s00220-006-0150-x

Download citation

Keywords

Profiles

  1. Barry C. SandersView author profile

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp