1157Accesses
51Citations
6 Altmetric
Abstract
Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φf) for flowers ofBellis perennis (white, yellow, pink, and purple),Ornithogalum thyrsoides (petals and ovaries),Limonium sinuatum (white and yellow),Lampranthus productus (yellow),Petunia nyctaginiflora (white),Bougainvillea spectabilis (white and yellow),Antirrhinum majus (white and yellow),Eustoma grandiflorum (white and blue),Citrus aurantium (petals and stigma), andPortulaca grandiflora (yellow). The highest values were obtained for the ovaries ofO. thyrsoides (Φf = 0.030) and forCitrus aurantium petals (Φf = 0.014) and stigma (Φf = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Andersen ØM, Jordheim M (2006) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, pp 471–537
Andrews K, Reed SM, Masta SE (2007) Spiders fluoresce variably across many taxa. Biol Lett 3:265–267. doi:10.1098/rsbl.2007.0016
Arnold KE, Owens IPF, Marshall NJ (2002) Fluorescent signaling in parrots. Science 295:92. doi:10.1126/science.295.5552.92
Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041. doi:10.1016/j.visres.2008.03.025
Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510. doi:10.1146/annurev.ento.46.1.471
Chittka L, Kevan PG (2005) Flower colour as advertisement. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest Ltd., Cambridge
Davies KL, Stpiczynska M, Gregg A (2005) Nectar-secreting floral stomata inMaxillaria anceps Ames & C. Schweinf. (Orchidaceae). Ann Bot 96:217–227. doi:10.1093/aob/mci182
Dyer AG, Chittka L (2004) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J Comp Physiol A 190:759–763. doi:10.1007/s00359-004-0547-y
Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557. doi:10.1007/s00359-005-0622-z
Dyer AG, Whitney HM, Arnold SEJ, Glober BJ, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception ofAntirrhinum majus flower colour. Arthropod-Plant Interactions 1:45–55. doi:10.1007/s11829-007-9002-7
Gandía-Herrero F, Garcia-Carmona F, Escribano J (2005a) Floral fluorescence effect. Nature 437:334. doi:10.1038/437334a
Gandía-Herrero F, Escribano J, García-Carmona F (2005b) Betaxanthins as pigments responsible for visible fluorescence in flowers. Planta 222:586–593. doi:10.1007/s00425-005-0004-3
Giurfa M (2004) Conditioning procedure and color discrimination in the honeybeeApis mellifera. Naturwissenschaften 91:228–231. doi:10.1007/s00114-004-0530-z
Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703. doi:10.1016/S1350-9462(01)00009-X
Iriel A, Lagorio MG (2009) Biospectroscopy ofRhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method. Photochem Photobiol Sci 3:337–344. doi:10.1039/b814461c
Iriel A, Lagorio MG (2010) Implications of reflectance and fluorescence ofRhododendron indicum flowers in biosignaling. Photochem Photobiol Sci 9:342–348. doi:10.1039/b9pp00104b
Kelber A, Vorobyev M, Osorio D (2003) Animal color vision—behavioural test and physiological concepts. Biol Rev 78:81–118. doi:10.1017/S1464793102005985
Kevan PG (1976) Fluorescent nectar. Science 194:341–342
Lim MLM, Land MF, Li D (2007) Sex-specific UV and fluorescence signals in jumping spiders. Science 315:481. doi:10.1126/science.1134254
Maier EJ (1994) Ultraviolet vision in a passeriform bird: from receptor spectral sensitivity to overall sensitivity inLeiothrix lutea. Vis Res 34:1415–1418. doi:10.1016/0042-6989(94)90141-4
Ono E, Fucuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments; anthocyanins, betalains and carotenoids. Plant J 54:733–749. doi:10.1111/j.1365-313X.2008.03447.x
Peitsch D, Fietz A, Hertel H, de Souza J, Fix Ventura D, Menzel R (1992) The spectral input system of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. doi:10.1007/BF00190398
Smith VC, Pokorny J (2003) Color matching and color discrimination. In: Shevell SK (ed) Science of color, 2nd edn. Elsevier, Oxford, pp 117–120
Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, an in human nutrition. Trends Food Sci Tech 15:19–38. doi:10.1016/j.tifs.2003.07.004
Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. PNAS 103:11075–11080. doi:10.1073/pnas.0604246103
Thorp RW, Briggs DL, Estes JR, Erickson EH (1975) Nectar fluorescence under ultraviolet irradiation. Science 189:476–478. doi:10.1126/science.189.4201.476
Vorobyev M, Marshall J, Osorio D, Hempel de Ibarra N, Menzel R (2001) Colorful objects through animal eyes. Color Res Appl 26:S214–S217. doi:10.1002/1520-6378(2001)26:1+<::AID-COL45>3.0.CO;2-A
Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Blover BJ (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133. doi:10.1126/science.1166256
Wyszecki G, Stiles WS (2000) The CIE colorimetric system. In: Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York, p 145
Acknowledgements
The authors are grateful to the University of Buenos Aires (project UBACyT X114 2008–2010), to the University of San Martín (project SA08/009), and to the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201/OC-AR PICT 938) for the financial support.
Author information
Authors and Affiliations
INQUIMAE/Dpto. de Química Inorgánica, Analítica y Qca. Física. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
Analía Iriel & María Gabriela Lagorio
- Analía Iriel
Search author on:PubMed Google Scholar
- María Gabriela Lagorio
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMaría Gabriela Lagorio.
Rights and permissions
About this article
Cite this article
Iriel, A., Lagorio, M.G. Is the flower fluorescence relevant in biocommunication?.Naturwissenschaften97, 915–924 (2010). https://doi.org/10.1007/s00114-010-0709-4
Received:
Revised:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


