Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

On Cayley’s Factorization of 4D Rotations and Applications

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

A 4D rotation can be decomposed into a left- and a right-isoclinic rotation. This decomposition, known as Cayley’s factorization of 4D rotations, can be performed using the Elfrinkhof–Rosen method. In this paper, we present a more straightforward alternative approach using the corresponding orthogonal subspaces, for which orthogonal bases can be defined. This yields easy formulations, both in the space of\({4 \times 4}\) real orthogonal matrices representing 4D rotations and in the Clifford algebra\({\mathcal{C}_{4,0,0}}\). Cayley’s factorization has many important applications. It can be used to easily transform rotations represented using matrix algebra to different Clifford algebras. As a practical application of the proposed method, it is shown how Cayley’s factorization can be used to efficiently compute the screw parameters of 3D rigid-body transformations.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

ArticleOpen access28 April 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Angeles J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Baylis, WE.; Hadi, S.: Rotations in n-dimensions as spherical vectors. Applications of Geometric Algebra in Computer Science and Engineering, AGACSE 2001, Ed. Springer, Chapter 6, pp. 79–89 (2002)

  3. Cayley A.: On certain results relating to quaternions. Philos. Mag.26, 141–145 (1845)

    Google Scholar 

  4. Cayley, A.: Recherches ultérieures sur les déterminants gauches. In: The Collected Mathematical Papers Of Arthur Cayley, pp. 202–215. Cambridge Uniniversity Press, Cambridge (article 137) (1891)

  5. Davidson J.K., Hunt K.H.: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  6. Dorst, L.; Fontjine, D.; Mann, S.: Geometric Algebra for Computer Science, Ed. Morgan Kaufmann, Burlington (2007)

  7. Ge Q.J.: On the matrix algebra realization of the theory of biquaternions. Mech. Synth. Anal.70, 425–432 (1994)

    Google Scholar 

  8. Hitchcock, FL.: Analysis of rotations in euclidean four-space by sedenions, J. Math. Phys. Univerisity of Massachusetts, 9(3), 188–193 (1930)

  9. Hsiung, CY.; Mao, GY.: Linear Algebra. Allied Publishers (1998)

  10. Hunt, M.; Mullineux, G.; Cripps, RJ.; Cross, B.: Characterizing isoclinic matrices and the Cayley factorization. Proc. IMechE Part C J. Mech. Eng. Sci. 0(0) 1–7 (2015)

  11. Mebius, JE.: Applications of quaternions to dynamical simulation, computer graphics and biomechanics, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands (1994)

  12. Pertti L.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  13. Rosen N.: on the general Lorentz transformation. J. Math. Phys.9, 181–187 (1930)

    Article MATH  Google Scholar 

  14. Thomas F.: Approaching dual quaternions from matrix algebra. IEEE Trans. Robot.30(5), 1037–1048 (2014)

    Article  Google Scholar 

  15. van Elfrinkhof, L.: Eene eigenschap van de orthogonale substitutie van de vierde orde. Handelingen van het zesde Nederlandsch Natuur- en Geneeskundig Congres (Acts of the sixth Dutch nature and medical congress), pp. 237–240. Delft (1897)

  16. Weiner J.L., Wilkens G.R.: “Quaternions and rotations inE4”. Am. Math. Mon.112(1), 69–76 (2005)

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mechanical Engineering, Idaho State University, Pocatello, Idaho, 83209, USA

    Alba Perez-Gracia

  2. Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Llorens Artigas 4-6, 08028, Barcelona, Spain

    Federico Thomas

Authors
  1. Alba Perez-Gracia
  2. Federico Thomas

Corresponding author

Correspondence toAlba Perez-Gracia.

Additional information

This work was partially supported by the Spanish Ministry of Economy and Competitiveness through Project DPI2014-57220-C2-2-P and the USA National Science Foundation under Grant No. 1208385. The content is solely the authors’ responsibility.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Gracia, A., Thomas, F. On Cayley’s Factorization of 4D Rotations and Applications.Adv. Appl. Clifford Algebras27, 523–538 (2017). https://doi.org/10.1007/s00006-016-0683-9

Download citation

Mathematics Subject Classification

Keyword

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp