589Accesses
7Altmetric
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
References
K.G. Andersson, Poincaré’s discovery of homoclinic points,Archive for History of Exact Sciences 48 (1994), 133–147.
J. Barrow-Green, Oscar II’s prize competition and the error in Poincaré’s memoir on the three body problem,Archive for History of Exact Sciences 48 (1994), 107–131.
J. Bernoulli,Opera Omnia, vol. I, Georg Olms Verlagsbuchandlung, Hildesheim, 1968.
G. Bisconcini, Sur le problème des trois corps,Acta Mathematica 30 (1906), 49–92.
E.H. Bruns, Über die Integrale des Vielkörper-Problems,Acta Mathematica 11 (1887), 25–96.
C. Calude, H. Jürgensen and M. Zimand, Is independence an exception?Applied Math. Comput. 66 (1994), 63–76.
F.N. Diacu,Singularities of the N-Body Problem, Les Publications CRM, Montréal, 1992.
F.N. Diacu, Painlevé’s conjecture,The Mathematical Intelligencer 15 (1993), no. 2, 6–12.
F.N. Diacu and P. Holmes,Celestial Encounters—The Origins of Chaos and Stability. Princeton University Press (to appear in August 1996).
Dieudonné, J.,A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, Boston, Basel, 1989.
R.L. Goodstein,Essays in the Philosophy of Mathematics, Leicester University Press, 1965.
K. Godei, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Système,Monatshefte für Mathematik und Physik 38 (1931), 173–198.
H. Poincaré,New Methods of Celestial Mechanics (with an introduction by D.L. Goroff), American Institute of Physics, 1993.
D.G. Saari, A visit to the Newtonian N-body problem via elementary complex variables,The American Mathematical Monthly 97 (1990), 105–119.
C.L. Siegel, Der Dreierstoß,Annals of Mathematics 42 (1941), 127–168.
K. Sundman, Recherches sur le problème des trois corps,Acta Societatis Scientiarum Fennicae 34 (1907), no. 6.
K. Sundman, Nouvelles recherches sur le problème des trois corps,Acta Societatis Scientiarum Fennicae 35 (1909), no. 9.
K. Sundman, Mémoire sur le problème des trois corps,Acta Mathematica 36 (1912), 105–179.
J.B. Urenko, Improbability of collisions in Newtonian gravitational systems of specified angular momentum.SIAM f. Appl. Math. 36 (1979), 123–147.
Q. Wang, The global solution of the n-body problem,Celestial Mechanics 50 (1991), 73–88.
A. Wintner,The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941.
Author information
Authors and Affiliations
Department of Mathematics and Statistics, University of Victoria, V8W 3P4, Victoria, British Columbia, Canada
Florin Diacu
- Florin Diacu
You can also search for this author inPubMed Google Scholar
Additional information
Dedicated to Philip Holmes, for his deep mathematics, for his warm and candid poetry, and for the immense intellectual joy he has instilled in me during the time our book took shape.
Rights and permissions
About this article
Cite this article
Diacu, F. The solution of then-body problem.The Mathematical Intelligencer18, 66–70 (1996). https://doi.org/10.1007/BF03024313
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative