162Accesses
9Citations
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Literatur
Vergl. die Anmerkung zu Ann. XIV, S. 236.
Mit Rücksicht auf eine Bemerkung des Hrn. du Bois-Reymond (Ann. XIV, p. 506) habe ich noch meine Aeusserung (a. a. O. zu Ann. XIV, p. 232) zu begründen, dass eine stetige Functionf(x), welche bei einem beliebigen Grenzübergange desx einen unendlichen Grenzwerth besitzt,bestimmt unendlich werden müsse. Auf diesen Satz führen die von Hrn. Weierstrass in seinen Vorlesungen angewendeten Definitionen. Hiernach sagt man z. B., die abhängige Veränderlichef(x) wird beim Grenzübergange limx=+∞ positiv unendlich, wenn sie die folgende Eigenschaft hat. IstH eine gegebene beliebige positive Zahl, so muss eine positive ZahlG existiren, so dass füralle der Veränderlichenx vermöge ihrer Definition zukommenden Werthe, welche >G sind,f(x)>H ist. Gilt dieses aber nur bezüglich des absoluten Betrages vonf(x), so wirdf(x) unbestimmt unendlich. Daher kann eine stetige Function für limx=+∞ nicht unbestimmt unendlich werden; denn sie müsste für Werthe vonx, grösser als jede beliebige Zahl, entgegengesetzt bezeichnete Werthe annehmen, somit müsste es auch Werthe vonx, grösser als jede beliebige Zahl, geben, wofür sie verschwindet. — Zu derselben Ansicht führt die Theorie der von Hrn. du Bois-Reymond erfundenenUnbestimmtheitsgrenzen. Die nothwendige und hinreichende Bedingung dafür, dassf(x) z. B. für limx=+∞ einen Grenzwerth besitze, ist dieGleichheit der Unbestimmtheitsgrenzen für limx=+∞; d. h. falls sie nicht endlich sind, müssen beide +∞ oder beide −∞ sein. Im Falle des “Unbestimmt-Unendlich Werdens” gilt dieses zwar nicht mehr vonf(x) selbst, wohl aber vom absoluten Betrage vonf(x). Die Unbestimmtheitsgrenzen des absoluten Betrages einer solchen stetigen Function wiex sinx für limx=+∞ sind aber 0 und +∞.
Author information
Additional information
Nachtrag zum Aufsatze im XIV. Bande dieser Annalen S. 231.
Rights and permissions
About this article
Cite this article
Stolz, O. Ueber die Grenzwerthe der Quotienten.Math. Ann.15, 556–559 (1879). https://doi.org/10.1007/BF02086277
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative