210Accesses
70Citations
3 Altmetric
Summary
The accumulation of the lipophilic cation, triphenylmethylphosphonium, has been employed to determine the resting membrane potential in human erythrocytes, turkey erythrocytes, and rat white adipocytes. The triphenylmethylphosphonium cation equilibrates rapidly in human erythrocytes in the presence of low concentrations of the hydrophobic anion, tetraphenylborate. Tetraphenylborate does not accelerate the uptake of triphenylmethylphosphonium ion by adipocytes. The cell associatedvs. extracellular distribution of the triphenylmethylphosphonium ion is proportional to changes in membrane potential. The distribution of this ion reflects the membrane potential determining concentration of the ion with dominant permeability in a “Nernst” fashion. The resting membrane potentials for the human erythrocyte, turkey erythrocyte, and rat white adipocyte were found to be −8.4±1.3, −16.8±1.1, and −58.3±5.0 mV, respectively, values which compare favorably with values obtained by other methods. In addition, changes in membrane potential can be assessed by following triphenylmethylphosphonium uptake without determining the intracellular water space. The method has been successfully applied to a study of hormonally induced changes in membrane potential of rat white adipocytes.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Altendorf, K., Hirata, H., Harold, F.M. 1975. Accumulation of lipid soluble ions and of rubidium as indicators of the electrical potential of membrane vesicles ofEscherichia coli.J. Biol. Chem.250:1405
Azzone, G.F., Bragadin, T.N., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta459:96
Azzone, G.F., Pozzan, T., Massari, S., Bragadin, M. 1978. Proton electrochemical gradients and rate of controlled respiration in mitochondria.Biochim. Biophys. Acta501:296
Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.D., Liberman, E.A., Severina, I.I., Skulachev, P. 1970. Conversion of biomembranes produced energy into electrical form. II. Intact mitochondria.Biochim. Biophys. Acta216:13
Bakker, E.P., Rottenberg, J., Caplan, S.P. 1976. An estimation of the light induced electrochemical potential difference on protons across the membrane ofHalobacterium holobium.Biochim. Biophys. Acta440:557
Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol.10:311
Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disufonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol.15:207
Clausen, T., Rodbell, M., Durand, P. 1969. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts.J. Biol. Chem.244:1252
Dahl, J.L., Hokin, L.E. 1974. The Na+−K+ ATPase.Annu. Rev. Biochem.43:327
Deutsch, C., Erecinska, R., Werrlein, R., Silver, I.A. 1979a. Cellular energy metabolism, trans-plasma, and trans-mitochondrial membrane potentials and pH-gradients in mouse neuroblastoma.Proc. Nat. Acad. Sci. USA76:2175
Deutsch, C.J., Holiam, A., Holiam, S.K., Daniele, R.P., Wilson, D.F. 1979b. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.J. Cell. Physiol.99:79
Deutsch, C., Küla, T. 1978. Transmembrane electrical and pH gradients ofP. denitrificans and their relationship to oxidative phosphorylation.FEBS Lett.87:145
Freedman, J.C., Hoffman, J.F. 1979a. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol.74:157
Freedman, J.C., Hoffman, J.F. 1979b. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol.74:187
Fünder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand.68:234
Gliemann, J., Osterlind, K., Vinten, J., Gammeltoft, S. 1972. A procedure for measurement of distribution spaces in isolated fat cells.Biochim. Biophys. Acta286:1
Grinius, L.L., Jasaitas, A.A., Kadziauskas, Y.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A. 1970. On conversions of biomembrane produced energy into electric form. I. Submitochondrial particles.Biochim. Biophys. Acta216:1
Grollman, E.F., Lee, G., Ambesi-Impiombato, H.G., Meldolesi, M.F., Aloj, S.M., Coon, H.G., Kaback, H.R., Kohn, L.D. 1977. Effects of thyrotropin on the thyroid cell membrane: Hyperpolarization induced by hormone-receptor interaction.Proc. Nat. Acad. Sci. USA74:2352
Harris, E.J., Maizels, M. 1952. Distribution of ions in suspensions of human erythrocytes.J. Physiol. (London)118:40
Heinz, E.D., Geck, P., Peitreyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci.264:428
Hirata, H., Altendorf, J., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA70:1804
Hoffman, J.E., Laris, P.C. 1974. Determinations of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London)239:519
Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials in amphibian red cells.Proc. Int. Union Physiol. Sci.9:253 (abstr.)
Horn, L.W., Rogus, E.M., Zierler, K.L. 1973. Water content of isolated fat cells.Biochim. Biophys. Acta313:399
Horn, L.W., Zierler, K.L. 1975. Effects of external potassium on potassium efflux and accumulation by rat white adipocytes.J. Physiol. (London)253:207
Hunter, M.J. 1971. A quantitative estimate of the non-exchangerestricted chloride permeability of the human red cell.J. Physiol. (London)218:49P (abstr.)
Hunter, M.J. 1974. The use of lipid bilayer as cell membrane models: An experimental test using the ionophore, valinomycin.In: Drugs and Transport Processes. B.A. Callinghan, editor. p. 227. Macmillan, London
Katz, B. 1966. Nerve, Muscle, and Synapse. p. 41. McGraw Hill, New York
Kimmich, G.A., Philo, R.D., Eddy, A.A. 1977. The effects of ionophores on the fluorescence of the cation 3,3′-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte ghosts, or liposomes.Biochem. J.168:81
Knauf, P.A., Fuhrman, D.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membranes.J. Gen. Physiol.69:363
Komar, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport.Eur. J. Biochem.70:197
Korchak, H.M., Weissman, G. 1978. Change in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.Proc. Nat. Acad. Sci. USA75:3818
Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M. Rorth and Astrüp, P., editors. p. 291. Academic Press, New York
Lassen, U.V., Nielsen, A.M.T., Page, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol.6:269
Lichtshtein, D., Dunlop, K., Kaback, H.R., Blume, A.J. 1979a. Mechanism of monensin induced hyperpolarization of neuroblastoma-glioma hybrid WG108-15.Proc. Nat. Acad. Sci. USA76:2580
Lichtshtein, D., Kaback, H.R., Blume, A.J. 1979b. Use of lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Nat. Acad. Sci. USA76:650
Livingston, J.N., Lockwood, D.H. 1974. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats.Biochem. Biophys. Res. Commun.61:989
Lombardi, F.J., Reeves, J.P., Short, S.A., Kaback, H.R. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.Ann. N.Y. Acad. Sci.227:312
Macey, R.I., Adorant, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta512:284
Miller, A.G., Budd, K. 1976. Evidence for a negative membrane potential and for movement of Cl− against its electrochemical gradient in theAscomytes neocosmosporo vasinfect.J. Bacteriol.132:741
Miller, Z.V., Schlosser, G.H., Beigelman, P.M. 1966. Electrical potentials and isolated fat cells.Biochim. Biophys. Acta112:375
Minemura, T., Lacy, W.W., Crofford, O.B. 1970. Regulation of the transport and metabolism of amino acids in isolated fat cells. Effect of insulin and a possible role for adenosine 3′, 5′-monophosphate.J. Biol. Chem.245:3872
Perry, M.C., Hales, C.N. 1969. Rates of efflux and intracellular concentrations of potassium sodium, and chloride ions in isolated fat cells from the rat.Biochem J.115:865
Ramos, S., Grollman, E.F., Lazo, P.S., Dyer, S.A., Habig, W.H., Hardegree, M.C., Kaback, H.R., Kohn, L.D. 1979. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation, tetraphenyl phosphonium by guinea pig brain synaptosomes.Proc. Nat. Acad. Sci. USA76:4783
Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.J. Biol. Chem.239:375
Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: Merocyanine and oxonal dyes.J. Biol. Chem.254:2047
Russell, J.T., Beeler, T., Martonosi, A. 1979b. Opical probe responses on sarcoplamic reticulum: Oxacarboxyanines.J. Biol. Chem.254:2040
Sarkadi, B., Szasz, I., Gardos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations in cation pump studies.J. Membrane Biol.26:357
Schuldiner, S., Kaback, H.R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemisty14:5451
Skulachev, V.P. 1971. Energy transformation in the respiratory chain.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 4, p. 127. Academic Press, New York
Waggoner, A.S. 1976. Optical probes of membrane potential.J. Membrane Biol.27:317
Waggoner, A.S. 1979. Dye indicators of membrane potentials.Annu. Rev. Biophys. Bioeng.8:47
Warburg, E.J. 1922. Carbonic acid compounds and hydrogen activities in blood and salt solutions.Biochem. J.16:152
Zierler, K.L. 1972. Insulin, ions, and membrane potentials.In: Handbook of Physiology Section 7: Endocrinology, Vol. I: Endocrine Pancreas. R.O. Greep, and E.B. Astwood, editors. Vol. 22, p. 347, Williams & Wilkins, Baltimore
Author information
Kang Cheng
Present address: Department of Pharmacology, University of Virginia School of Medicine, 22903, Charlottesville, Virginia
Authors and Affiliations
Memorial Sloan-Kettering Cancer Center and Graduate School of Medical Sciences, Cornell University, 10021, New York, New York
Kang Cheng, Howard C. Haspel, Mary Lou Vallano, Babatunde Osotimehin & Martin Sonenberg
- Kang Cheng
Search author on:PubMed Google Scholar
- Howard C. Haspel
Search author on:PubMed Google Scholar
- Mary Lou Vallano
Search author on:PubMed Google Scholar
- Babatunde Osotimehin
Search author on:PubMed Google Scholar
- Martin Sonenberg
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Cheng, K., Haspel, H.C., Vallano, M.L.et al. Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation.J. Membrain Biol.56, 191–201 (1980). https://doi.org/10.1007/BF01869476
Received:
Revised:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative

