Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Precision cosmological constraints on atomic dark matter

  • Regular Article - Theoretical Physics
  • Open access
  • Published:

You have full access to thisopen access article

Journal of High Energy Physics Aims and scope Submit manuscript

Apreprint version of the article is available at arXiv.

Abstract

Atomic dark matter is a simple but highly theoretically motivated possibility for an interacting dark sector that could constitute some or all of dark matter. We perform a comprehensive study of precision cosmological observables on minimal atomic dark matter, exploring for the first time the full parameter space of dark QED coupling and dark electron and proton masses (αD,\( {m}_{e_D} \),\( {m}_{p_D} \)) as well as the two cosmological parameters of aDM mass fractionfD and temperature ratioξ at time of SM recombination. We also show how aDM can accommodate the (H0, S8) tension from late-time measurements, leading to a better fit than ΛCDM or ΛCDM + dark radiation. Furthermore, including late-time measurements leads to closed contours of preferredξ and dark hydrogen binding energy. The dark proton mass is seemingly unconstrained. Our results serve as an important new jumping-off point for future precision studies of atomic dark matter at non-linear and smaller scales.

Article PDF

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Planck collaboration,Planck 2018 results. VI. Cosmological parameters,Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  2. A.G. Riess et al.,A Comprehensive Measurement of the Local Value of the Hubble Constant with 1km s1Mpc1Uncertainty from the Hubble Space Telescope and the SH0ES Team,Astrophys. J. Lett.934 (2022) L7 [arXiv:2112.04510] [INSPIRE].

    Article ADS  Google Scholar 

  3. W.L. Freedman et al.,The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch,Astrophys. J.882 (2019) 34 [arXiv:1907.05922] [INSPIRE].

  4. W.L. Freedman et al.,Calibration of the Tip of the Red Giant Branch (TRGB),arXiv:2002.01550 [https://doi.org/10.3847/1538-4357/ab7339] [INSPIRE].

  5. W.L. Freedman,Measurements of the Hubble Constant: Tensions in Perspective,Astrophys. J.919 (2021) 16 [arXiv:2106.15656] [INSPIRE].

    Article ADS  Google Scholar 

  6. K.C. Wong et al.,H0LiCOW — XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes,Mon. Not. Roy. Astron. Soc.498 (2020) 1420 [arXiv:1907.04869] [INSPIRE].

  7. H. Hildebrandt et al.,KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data,Astron. Astrophys.633 (2020) A69 [arXiv:1812.06076] [INSPIRE].

    Article  Google Scholar 

  8. N. MacCrann et al.,Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?,Mon. Not. Roy. Astron. Soc.451 (2015) 2877 [arXiv:1408.4742] [INSPIRE].

    Article ADS  Google Scholar 

  9. S. Joudaki et al.,CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics,Mon. Not. Roy. Astron. Soc.465 (2017) 2033 [arXiv:1601.05786] [INSPIRE].

    Article ADS  Google Scholar 

  10. S. Joudaki et al.,KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear,Astron. Astrophys.638 (2020) L1 [arXiv:1906.09262] [INSPIRE].

    Article ADS  Google Scholar 

  11. KiDS collaboration,KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics,Astron. Astrophys.645 (2021) A104 [arXiv:2007.15633] [INSPIRE].

  12. KiDS and Euclid collaborations,KiDS and Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography,Astron. Astrophys.665 (2022) A56 [arXiv:2110.06947] [INSPIRE].

  13. C. Heymans et al.,KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints,Astron. Astrophys.646 (2021) A140 [arXiv:2007.15632] [INSPIRE].

    Article  Google Scholar 

  14. DES collaboration,Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing,Phys. Rev. D105 (2022) 023520 [arXiv:2105.13549] [INSPIRE].

  15. O.H.E. Philcox and M.M. Ivanov,BOSS DR12 full-shape cosmology: ΛCDM constraints from the large-scale galaxy power spectrum and bispectrum monopole,Phys. Rev. D105 (2022) 043517 [arXiv:2112.04515] [INSPIRE].

  16. E. Abdalla et al.,Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies,JHEAp34 (2022) 49 [arXiv:2203.06142] [INSPIRE].

    ADS  Google Scholar 

  17. E. Di Valentino et al.,Snowmass2021 — Letter of interest cosmology intertwined II: The hubble constant tension,Astropart. Phys.131 (2021) 102605 [arXiv:2008.11284] [INSPIRE].

  18. P. Asadi et al.,Early-Universe Model Building,arXiv:2203.06680 [INSPIRE].

  19. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells,Atomic Dark Matter,JCAP05 (2010) 021 [arXiv:0909.0753] [INSPIRE].

    Article ADS  Google Scholar 

  20. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells,Dark Atoms: Asymmetry and Direct Detection,JCAP10 (2011) 011 [arXiv:1105.2073] [INSPIRE].

    Article ADS  Google Scholar 

  21. J.M. Cline, Z. Liu and W. Xue,Millicharged Atomic Dark Matter,Phys. Rev. D85 (2012) 101302 [arXiv:1201.4858] [INSPIRE].

  22. F.-Y. Cyr-Racine and K. Sigurdson,Cosmology of atomic dark matter,Phys. Rev. D87 (2013) 103515 [arXiv:1209.5752] [INSPIRE].

  23. F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson,Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology,Phys. Rev. D89 (2014) 063517 [arXiv:1310.3278] [INSPIRE].

  24. J.J. Fan, A. Katz, L. Randall and M. Reece,Dark-Disk Universe,Phys. Rev. Lett.110 (2013) 211302 [arXiv:1303.3271] [INSPIRE].

  25. J.J. Fan, A. Katz, L. Randall and M. Reece,Double-Disk Dark Matter,Phys. Dark Univ.2 (2013) 139 [arXiv:1303.1521] [INSPIRE].

    Article  Google Scholar 

  26. D. Curtin and J. Setford,Direct Detection of Atomic Dark Matter in White Dwarfs,JHEP03 (2021) 166 [arXiv:2010.00601] [INSPIRE].

    Article ADS  Google Scholar 

  27. S. Bansal et al.,Mirror twin Higgs cosmology: constraints and a possible resolution to the H0and S8tensions,JHEP05 (2022) 050 [arXiv:2110.04317] [INSPIRE].

    Article ADS  Google Scholar 

  28. F.-Y. Cyr-Racine, F. Ge and L. Knox,Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant,Phys. Rev. Lett.128 (2022) 201301 [arXiv:2107.13000] [INSPIRE].

  29. N. Blinov, G. Krnjaic and S.W. Li,Toward a realistic model of dark atoms to resolve the Hubble tension,Phys. Rev. D105 (2022) 095005 [arXiv:2108.11386] [INSPIRE].

  30. S. Gariazzo, P.F. de Salas and S. Pastor,Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix,JCAP07 (2019) 014 [arXiv:1905.11290] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  31. Z. Chacko et al.,Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure,JHEP12 (2016) 108 [arXiv:1609.03569] [INSPIRE].

  32. Z. Chacko, D. Curtin, M. Geller and Y. Tsai,Cosmological Signatures of a Mirror Twin Higgs,JHEP09 (2018) 163 [arXiv:1803.03263] [INSPIRE].

    Article ADS  Google Scholar 

  33. H. Rubira, A. Mazoun and M. Garny,Full-shape BOSS constraints on dark matter interacting with dark radiation and lifting the S8 tension,JCAP01 (2023) 034 [arXiv:2209.03974] [INSPIRE].

    Article ADS  Google Scholar 

  34. M. Joseph et al.,A Step in understanding the S8 tension,Phys. Rev. D108 (2023) 023520 [arXiv:2207.03500] [INSPIRE].

  35. M.A. Buen-Abad et al.,Stepped partially acoustic dark matter, large scale structure, and the Hubble tension,JHEP06 (2023) 012 [arXiv:2208.05984] [INSPIRE].

    Article ADS  Google Scholar 

  36. Planck collaboration,Planck 2018 results. V. CMB power spectra and likelihoods,Astron. Astrophys.641 (2020) A5 [arXiv:1907.12875] [INSPIRE].

  37. F. Beutler et al.,The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,Mon. Not. Roy. Astron. Soc.416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].

    Article ADS  Google Scholar 

  38. A.J. Ross et al.,The clustering of the SDSS DR7 main Galaxy sample — I. A 4per cent distance measure at z = 0.15,Mon. Not. Roy. Astron. Soc.449 (2015) 835 [arXiv:1409.3242] [INSPIRE].

    Article ADS  Google Scholar 

  39. BOSS collaboration,The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,Mon. Not. Roy. Astron. Soc.470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

  40. Pan-STARRS1 collaboration,The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,Astrophys. J.859 (2018) 101 [arXiv:1710.00845] [INSPIRE].

  41. D. Blas, J. Lesgourgues and T. Tram,The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,JCAP07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

    Article ADS  Google Scholar 

  42. F.-Y. Cyr-Racine et al.,ETHOS — an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe,Phys. Rev. D93 (2016) 123527 [arXiv:1512.05344] [INSPIRE].

  43. T. Brinckmann and J. Lesgourgues,MontePython 3: boosted MCMC sampler and other features,Phys. Dark Univ.24 (2019) 100260 [arXiv:1804.07261] [INSPIRE].

  44. Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra,Asymmetric inflationary reheating and the nature of mirror universe,Phys. Lett. B375 (1996) 26 [hep-ph/9511221] [INSPIRE].

  45. Z. Chacko, N. Craig, P.J. Fox and R. Harnik,Cosmology in Mirror Twin Higgs and Neutrino Masses,JHEP07 (2017) 023 [arXiv:1611.07975] [INSPIRE].

    Article ADS  Google Scholar 

  46. N. Craig, S. Koren and T. Trott,Cosmological Signals of a Mirror Twin Higgs,JHEP05 (2017) 038 [arXiv:1611.07977] [INSPIRE].

    Article ADS  Google Scholar 

  47. H. Beauchesne and Y. Kats,Cosmology of the Twin Higgs without explicit2breaking,JHEP12 (2021) 160 [arXiv:2109.03279] [INSPIRE].

    Article ADS  Google Scholar 

  48. K.M. Zurek,Asymmetric Dark Matter: Theories, Signatures, and Constraints,Phys. Rept.537 (2014) 91 [arXiv:1308.0338] [INSPIRE].

    Article ADS  Google Scholar 

  49. Z. Chacko, H.-S. Goh and R. Harnik,The Twin Higgs: Natural electroweak breaking from mirror symmetry,Phys. Rev. Lett.96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

  50. R. Barbieri, T. Gregoire and L.J. Hall,Mirror world at the large hadron collider,hep-ph/0509242 [INSPIRE].

  51. Z. Chacko, Y. Nomura, M. Papucci and G. Perez,Natural little hierarchy from a partially goldstone twin Higgs,JHEP01 (2006) 126 [hep-ph/0510273] [INSPIRE].

  52. Z. Chacko, D. Curtin, M. Geller and Y. Tsai,Direct detection of mirror matter in Twin Higgs models,JHEP11 (2021) 198 [arXiv:2104.02074] [INSPIRE].

    Article ADS  Google Scholar 

  53. I. Garcia Garcia, R. Lasenby and J. March-Russell,Twin Higgs Asymmetric Dark Matter,Phys. Rev. Lett.115 (2015) 121801 [arXiv:1505.07410] [INSPIRE].

  54. R. Foot and S. Mitra,Ordinary atom mirror atom bound states: A New window on the mirror world,Phys. Rev. D66 (2002) 061301 [hep-ph/0204256] [INSPIRE].

  55. R. Foot and R.R. Volkas,Was ordinary matter synthesized from mirror matter? An Attempt to explain why Omega(Baryon) approximately equal to 0.2 Omega(Dark),Phys. Rev. D68 (2003) 021304 [hep-ph/0304261] [INSPIRE].

  56. Z. Berezhiani,Mirror world and its cosmological consequences,Int. J. Mod. Phys. A19 (2004) 3775 [hep-ph/0312335] [INSPIRE].

  57. R. Foot,Have mirror stars been observed?,Phys. Lett. B452 (1999) 83 [astro-ph/9902065] [INSPIRE].

  58. R. Foot, A.Y. Ignatiev and R.R. Volkas,Physics of mirror photons,Phys. Lett. B503 (2001) 355 [astro-ph/0011156] [INSPIRE].

  59. R. Foot,Experimental implications of mirror matter-type dark matter,Int. J. Mod. Phys. A19 (2004) 3807 [astro-ph/0309330] [INSPIRE].

  60. R. Foot,Mirror matter-type dark matter,Int. J. Mod. Phys. D13 (2004) 2161 [astro-ph/0407623] [INSPIRE].

  61. R. Foot and S. Vagnozzi,Dissipative hidden sector dark matter,Phys. Rev. D91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].

  62. R.N. Mohapatra and S. Nussinov,Constraints on Mirror Models of Dark Matter from Observable Neutron-Mirror Neutron Oscillation,Phys. Lett. B776 (2018) 22 [arXiv:1709.01637] [INSPIRE].

    Article ADS  Google Scholar 

  63. S.I. Blinnikov and M.Y. Khlopov,On possible effects of ‘mirror’ particles,Sov. J. Nucl. Phys.36 (1982) 472 [INSPIRE].

    Google Scholar 

  64. S.I. Blinnikov and M. Khlopov,Possible astronomical effects of mirror particles,Sov. Astron.27 (1983) 371 [INSPIRE].

    ADS  Google Scholar 

  65. M.Y. Khlopov et al.,Observational Physics of Mirror World,Sov. Astron.35 (1991) 21 [INSPIRE].

  66. M. Khlopov,Fundamental Particle Structure in the Cosmological Dark Matter,Int. J. Mod. Phys. A28 (2013) 1330042 [arXiv:1311.2468] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  67. M. Archidiacono et al.,Constraining Dark Matter-Dark Radiation interactions with CMB, BAO, and Lyman-α,JCAP10 (2019) 055 [arXiv:1907.01496] [INSPIRE].

  68. J.M. Cline,Dark atoms and composite dark matter,SciPost Phys. Lect. Notes52 (2022) 1 [arXiv:2108.10314] [INSPIRE].

    Google Scholar 

  69. K. Bechtol et al.,Snowmass2021 Cosmic Frontier White Paper: Dark Matter Physics from Halo Measurements, in the proceedings of theSnowmass 2021, (2022) [arXiv:2203.07354] [INSPIRE].

  70. C. Dvorkin et al.,The Physics of Light Relics, in the proceedings of theSnowmass 2021, (2022) [arXiv:2203.07943] [INSPIRE].

  71. S. Adhikari et al.,Astrophysical Tests of Dark Matter Self-Interactions,arXiv:2207.10638 [INSPIRE].

  72. R. Krall, F.-Y. Cyr-Racine and C. Dvorkin,Wandering in the Lyman-alpha Forest: A Study of Dark Matter-Dark Radiation Interactions,JCAP09 (2017) 003 [arXiv:1705.08894] [INSPIRE].

    Article ADS  Google Scholar 

  73. S. Bose et al.,ETHOS — an Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-α forest,Mon. Not. Roy. Astron. Soc.487 (2019) 522 [arXiv:1811.10630] [INSPIRE].

    Article ADS  Google Scholar 

  74. M. Garny, T. Konstandin, L. Sagunski and S. Tulin,Lyman-α forest constraints on interacting dark sectors,JCAP09 (2018) 011 [arXiv:1805.12203] [INSPIRE].

    Article ADS  Google Scholar 

  75. R. Murgia, V. Iršič and M. Viel,Novel constraints on noncold, nonthermal dark matter from Lyman-α forest data,Phys. Rev. D98 (2018) 083540 [arXiv:1806.08371] [INSPIRE].

  76. J.B. Muñoz et al.,ETHOS — an effective theory of structure formation: Impact of dark acoustic oscillations on cosmic dawn,Phys. Rev. D103 (2021) 043512 [arXiv:2011.05333] [INSPIRE].

  77. A. Schneider,Constraining noncold dark matter models with the global 21-cm signal,Phys. Rev. D98 (2018) 063021 [arXiv:1805.00021] [INSPIRE].

  78. L. Lopez-Honorez, O. Mena and P. Villanueva-Domingo,Dark matter microphysics and 21 cm observations,Phys. Rev. D99 (2019) 023522 [arXiv:1811.02716] [INSPIRE].

  79. M. Escudero et al.,A fresh look into the interacting dark matter scenario,JCAP06 (2018) 007 [arXiv:1803.08427] [INSPIRE].

    Article ADS  Google Scholar 

  80. J.M. Cline, Z. Liu, G. Moore and W. Xue,Scattering properties of dark atoms and molecules,Phys. Rev. D89 (2014) 043514 [arXiv:1311.6468] [INSPIRE].

  81. M. McCullough and L. Randall,Exothermic Double-Disk Dark Matter,JCAP10 (2013) 058 [arXiv:1307.4095] [INSPIRE].

    Article ADS  Google Scholar 

  82. R. Foot,Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter,JCAP12 (2014) 047 [arXiv:1307.1755] [INSPIRE].

    Article ADS  Google Scholar 

  83. R. Foot,Galactic structure explained with dissipative mirror dark matter,Phys. Rev. D88 (2013) 023520 [arXiv:1304.4717] [INSPIRE].

  84. L. Randall and J. Scholtz,Dissipative Dark Matter and the Andromeda Plane of Satellites,JCAP09 (2015) 057 [arXiv:1412.1839] [INSPIRE].

    Article ADS  Google Scholar 

  85. K. Schutz, T. Lin, B.R. Safdi and C.-L. Wu,Constraining a Thin Dark Matter Disk with Gaia,Phys. Rev. Lett.121 (2018) 081101 [arXiv:1711.03103] [INSPIRE].

  86. R. Foot,Dissipative dark matter and the rotation curves of dwarf galaxies,JCAP07 (2016) 011 [arXiv:1506.01451] [INSPIRE].

    Article ADS  Google Scholar 

  87. O. Chashchina, R. Foot and Z. Silagadze,Radial acceleration relation and dissipative dark matter,Phys. Rev. D95 (2017) 023009 [arXiv:1611.02422] [INSPIRE].

  88. R. Foot and S. Vagnozzi,Solving the small-scale structure puzzles with dissipative dark matter,JCAP07 (2016) 013 [arXiv:1602.02467] [INSPIRE].

    Article ADS  Google Scholar 

  89. R. Foot,Dissipative dark matter halos: The steady state solution,Phys. Rev. D97 (2018) 043012 [arXiv:1707.02528] [INSPIRE].

  90. R. Foot,Resolution of the small scale structure issues with dissipative dark matter from multiple Standard Model sectors,Phys. Rev. D98 (2018) 123015 [arXiv:1804.02847] [INSPIRE].

  91. J. Buch, S.C.J. Leung and J.J. Fan,Using Gaia DR2 to Constrain Local Dark Matter Density and Thin Dark Disk,JCAP04 (2019) 026 [arXiv:1808.05603] [INSPIRE].

    Article ADS  Google Scholar 

  92. H. Winch, J. Setford, J. Bovy and D. Curtin,Using LSST Microlensing to Constrain Dark Compact Objects in Spherical and Disk Configurations,Astrophys. J.933 (2022) 177 [arXiv:2012.07136] [INSPIRE].

    Article ADS  Google Scholar 

  93. A. Widmark, C.F.P. Laporte, P.F. de Salas and G. Monari,Weighing the Galactic disk using phase-space spirals — II. Most stringent constraints on a thin dark disk using Gaia EDR3,Astron. Astrophys.653 (2021) A86 [arXiv:2105.14030] [INSPIRE].

  94. E.D. Kramer and L. Randall,Updated Kinematic Constraints on a Dark Disk,Astrophys. J.824 (2016) 116 [arXiv:1604.01407] [INSPIRE].

    Article ADS  Google Scholar 

  95. E.D. Kramer and L. Randall,Interstellar Gas and a Dark Disk,Astrophys. J.829 (2016) 126 [arXiv:1603.03058] [INSPIRE].

    Article ADS  Google Scholar 

  96. D.N. Spergel and P.J. Steinhardt,Observational evidence for selfinteracting cold dark matter,Phys. Rev. Lett.84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

  97. A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat,Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations,Mon. Not. Roy. Astron. Soc.430 (2013) 105 [arXiv:1208.3026] [INSPIRE].

    Article ADS  Google Scholar 

  98. M. Rocha et al.,Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure,Mon. Not. Roy. Astron. Soc.430 (2013) 81 [arXiv:1208.3025] [INSPIRE].

    Article ADS  Google Scholar 

  99. D. Curtin and J. Setford,How To Discover Mirror Stars,Phys. Lett. B804 (2020) 135391 [arXiv:1909.04071] [INSPIRE].

  100. D. Curtin and J. Setford,Signatures of Mirror Stars,JHEP03 (2020) 041 [arXiv:1909.04072] [INSPIRE].

    Article ADS  Google Scholar 

  101. M. Hippert et al.,Mirror neutron stars,Phys. Rev. D106 (2022) 035025 [arXiv:2103.01965] [INSPIRE].

  102. A. Howe, J. Setford, D. Curtin and C.D. Matzner,How to search for mirror stars with Gaia,JHEP07 (2022) 059 [arXiv:2112.05766] [INSPIRE].

    Article ADS  Google Scholar 

  103. M. Hippert et al.,Dark matter or regular matter in neutron stars? How to tell the difference from the coalescence of compact objects,Phys. Rev. D107 (2023) 115028 [arXiv:2211.08590] [INSPIRE].

  104. J. Pollack, D.N. Spergel and P.J. Steinhardt,Supermassive Black Holes from Ultra-Strongly Self-Interacting Dark Matter,Astrophys. J.804 (2015) 131 [arXiv:1501.00017] [INSPIRE].

    Article ADS  Google Scholar 

  105. S. Shandera, D. Jeong and H.S.G. Gebhardt,Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes,Phys. Rev. Lett.120 (2018) 241102 [arXiv:1802.08206] [INSPIRE].

  106. D. Singh et al.,Gravitational-wave limit on the Chandrasekhar mass of dark matter,Phys. Rev. D104 (2021) 044015 [arXiv:2009.05209] [INSPIRE].

  107. R. Foot,Mirror dark matter: Cosmology, galaxy structure and direct detection,Int. J. Mod. Phys. A29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  108. P.J.E. Peebles,Recombination of the Primeval Plasma,Astrophys. J.153 (1968) 1 [INSPIRE].

  109. Y.B. Zeldovich, V.G. Kurt and R.A. Sunyaev,Recombination of hydrogen in the hot model of the universe,Zh. Eksp. Teor. Fiz.55 (1968) 278 [INSPIRE].

  110. S. Seager, D.D. Sasselov and D. Scott,How exactly did the universe become neutral?,Astrophys. J. Suppl.128 (2000) 407 [astro-ph/9912182] [INSPIRE].

  111. N. Lee and Y. Ali-Haïmoud,HYREC-2: a highly accurate sub-millisecond recombination code,Phys. Rev. D102 (2020) 083517 [arXiv:2007.14114] [INSPIRE].

  112. Y. Ali-Haïmoud and C.M. Hirata,Ultrafast effective multi-level atom method for primordial hydrogen recombination,Phys. Rev. D82 (2010) 063521 [arXiv:1006.1355] [INSPIRE].

  113. C.-P. Ma and E. Bertschinger,Cosmological perturbation theory in the synchronous and conformal Newtonian gauges,Astrophys. J.455 (1995) 7 [astro-ph/9506072] [INSPIRE].

  114. H.-J. Seo, E.R. Siegel, D.J. Eisenstein and M. White,Non-linear structure formation and the acoustic scale,Astrophys. J.686 (2008) 13 [arXiv:0805.0117] [INSPIRE].

    Article ADS  Google Scholar 

  115. M.R. Buckley et al.,Scattering, Damping, and Acoustic Oscillations: Simulating the Structure of Dark Matter Halos with Relativistic Force Carriers,Phys. Rev. D90 (2014) 043524 [arXiv:1405.2075] [INSPIRE].

  116. F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro,Large scale structure of the universe and cosmological perturbation theory,Phys. Rept.367 (2002) 1 [astro-ph/0112551] [INSPIRE].

  117. T. Schaeffer and A. Schneider,Dark acoustic oscillations: imprints on the matter power spectrum and the halo mass function,Mon. Not. Roy. Astron. Soc.504 (2021) 3773 [arXiv:2101.12229] [INSPIRE].

    Article ADS  Google Scholar 

  118. L. Amendola et al.,Cosmology and fundamental physics with the Euclid satellite,Living Rev. Rel.21 (2018) 2 [arXiv:1606.00180] [INSPIRE].

    Article  Google Scholar 

  119. LSST Dark Energy Science collaboration,The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document,arXiv:1809.01669 [INSPIRE].

  120. DES collaboration,Milky Way Satellite Census. III. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies,Phys. Rev. Lett.126 (2021) 091101 [arXiv:2008.00022] [INSPIRE].

  121. S. Bashinsky and U. Seljak,Neutrino perturbations in CMB anisotropy and matter clustering,Phys. Rev. D69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

  122. Z. Hou et al.,How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail,Phys. Rev. D87 (2013) 083008 [arXiv:1104.2333] [INSPIRE].

  123. D. Baumann, D. Green, J. Meyers and B. Wallisch,Phases of New Physics in the CMB,JCAP01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

    Article ADS  Google Scholar 

  124. Z. Chacko, Y. Cui, S. Hong and T. Okui,Hidden dark matter sector, dark radiation, and the CMB,Phys. Rev. D92 (2015) 055033 [arXiv:1505.04192] [INSPIRE].

  125. Y. Ali-Haïmoud and C.M. Hirata,HyRec: A fast and highly accurate primordial hydrogen and helium recombination code,Phys. Rev. D83 (2011) 043513 [arXiv:1011.3758] [INSPIRE].

  126. D. Curtin and S. Gryba,Twin Higgs portal dark matter,JHEP08 (2021) 009 [arXiv:2101.11019] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  127. D. Camarena and V. Marra,On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference,Mon. Not. Roy. Astron. Soc.504 (2021) 5164 [arXiv:2101.08641] [INSPIRE].

    Article ADS  Google Scholar 

  128. T. Brinckmann, J.H. Chang and M. LoVerde,Self-interacting neutrinos, the Hubble parameter tension, and the cosmic microwave background,Phys. Rev. D104 (2021) 063523 [arXiv:2012.11830] [INSPIRE].

Download references

Acknowledgments

We are especially grateful to Francis-Yan Cyr-Racine for many helpful conversations on aDM cosmology; Yacine Ali-Haïmoud and Nanoom Lee for useful advice and providing the code to compute the effective recombination coefficients in HyRec; Melissa Joseph and Kylar Greene for technical advice on MCMC scans; and Zackaria Chacko for initial encouragement for this project. We also thank Daniel Gruner and Bruno Mundim for technical assistance on the Niagara cluster. This work was enabled by computational resources provided by Compute Canada and the Digital Research Alliance of Canada. The research of SB in part was supported by the DOE grant DE-SC0011784. The research of JB and DC was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair program, the Alfred P. Sloan Foundation, the Ontario Early Researcher Award, and the University of Toronto McLean Award. JB also acknowledges funding from a Postgraduate Doctoral Scholarship (PGS D) provided by the Natural Sciences and Engineering Research Council of Canada. The research of YT was supported by the NSF grant PHY-2112540.

Author information

Authors and Affiliations

  1. Department of Physics, University of Cincinnati, Cincinnati, Ohio, 45221, USA

    Saurabh Bansal

  2. Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada

    Jared Barron & David Curtin

  3. Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA

    Yuhsin Tsai

Authors
  1. Saurabh Bansal
  2. Jared Barron
  3. David Curtin
  4. Yuhsin Tsai

Corresponding author

Correspondence toJared Barron.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint:2212.02487

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Barron, J., Curtin, D.et al. Precision cosmological constraints on atomic dark matter.J. High Energ. Phys.2023, 95 (2023). https://doi.org/10.1007/JHEP10(2023)095

Download citation

Keywords

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp