Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Mean dimension, small entropy factors and an embedding theorem

  • Published:
Publications Mathématiques de l'Institut des Hautes Études Scientifiques Aims and scope

Abstract

In this paper we show how the notion of mean dimension is connected in a natural way to the following two questions: what points in a dynamical system (X, T) can be distinguished by factors with arbitrarily small topological entropy, and when can a system (X, T) be embedded in (([0, 1]d)Z, shift). Our results apply to extensions of minimalZ-actions, and for this case we also show that there is a very satisfying dimension theory for mean dimension.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. J. Auslander,Minimal flows and their extensions, Amsterdam, North-Holland (1988).

    MATH  Google Scholar 

  2. W. Hurewicz andH. Wallman,Dimension Theory, Princeton University Press (1941).

  3. A. Jaworski,University of Maryland Ph.D. Thesis (1974).

  4. S. Kakutani, A proof of Bebutov’s theorem,J. of Differential Eq.4 (1968), 194–201.

    Article MATH MathSciNet  Google Scholar 

  5. E. Lindenstrauss, Lowering Topological Entropy,J. d’Analyse Math.67 (1995), 231–267.

    MathSciNet  Google Scholar 

  6. E. Lindenstrauss andB. Weiss, On Mean Dimension, to appear inIsrael J. of Math.

  7. M. Shub andB. Weiss, Can one always lower topological entropy?,Ergod. Th. & Dynam. Sys.11 (1991), 535–546.

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Author notes
  1. Elon Lindenstrauss

    Present address: Institute for Advanced Study, 08540, Princeton, N.J.

Authors and Affiliations

  1. Institute of Mathematics, the Hebrew University, 91904, Jerusalem, Israel

    Elon Lindenstrauss

Authors
  1. Elon Lindenstrauss

About this article

Access this article

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp