Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A unified conformal model for fundamental interactions without dynamical Higgs field

  • Part II. Invited Papers Dedicated to Constantin Piron
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A Higgsless model for strong, electroweak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)×SU(2)L×U(1)×C,where C is the local conformal symmetry group. The natural minimal conformally invariant form of total Lagrangian is postulated. It contains all standard model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions, we can eliminate all four real components of the Higgs doublet in this model. However, the masses of vector mesons, leptons, and quarks are automatically generated and are given by the same formulas as in the conventional standard model. In this manner one gets the mass generation without the mechanism of spontaneous symmetry breaking and without the remaining real dynamical Higgs field. The gravitational sector is analyzed, and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Article20 July 2022

Chapter© 2025

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. CDF Collaboration, FERMILAB-PUB-94/116-E.

  2. Z. Hioki and R. Najima, “Is the standard eletroweak theory happy withm,∼ 174 GeV?,” preprint TOCUSHIMA 94-02, YCCP-9404.

  3. OPAL Collaboration and K. Ahmet,Phys. Lett. B251, 211 (1990); ALEPH Collaboration, D. Decampet al., Phys. Lett. B245, 289; (1990) DELPHI Collaboration, P. Abreuet al., Z. Phys. C51, 25 (1991).

    Article  Google Scholar 

  4. G. Altarelli, R. Barbieri, and F. Caravaglios,Nucl. Phys. B405, 3 (1993).

    Article  Google Scholar 

  5. M. Pawlowski and R. Raczka, “Mass generation in the standard model without dynamical Higgs field,”Bull. Board: hep-ph 9403303.

  6. J. Ellis, G. L. Fogli, E. Lisi,Phys. Lett. B318, 148 (1993).

    Article  Google Scholar 

  7. G. Montagnaet al., “The top quark and the Higgs boson mass from LEP SLC and CDF Data,”Bull. Board: hep-ph 9407246.

  8. J. Ellis, G. L. Fogli, and E. Lisi, CERN-TH.7261/94 and BARI-TH/177-94.

  9. G. Altarelli, R. Barbieri, and S. Jadach,Nucl. Phys. B309, 3 (1992).

    Article  Google Scholar 

  10. B. A. Kniehl, “High order corrections to Higgs-boson decays,”Bull. Board: hep-ph 9405317.

  11. S. Dittmaier, C. Grosse-Knetter, and D. Schildknecht, “On the Role of the Higgs Mechanism in Present Electroweak Precision Tests,”Bull. Board: hep-th 9406378.

  12. D. Caerupeel and M. Leblanc, “Mass Generation for Gauge Fields without Scalars”Bull. Board: hep-ph 9407029.

  13. M. J. Herrero and E. R. Morales,Nucl. Phys. B418, 341 (1994).

    Article  Google Scholar 

  14. U. Canutoet al., Phys. Rev. D16, 1643 (1977).

    Article  Google Scholar 

  15. N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  16. R. M. Wald,General Relativity (The University of Chicago Press, Chicago 1984).

    Google Scholar 

  17. M. A. Castagnino and J. B. Sztrajman,J. Math. Phys.27, 1037 (1986).

    Article  Google Scholar 

  18. R. Penrose,Ann. Phys.10, 171 (1960).

    Article  Google Scholar 

  19. K. S. Stelle,Phys. Rev. D16, 953 (1977).

    Article  Google Scholar 

  20. See, e.g., S. Deser and P. von Niewenhuizen,Phys. Rev. D10, 401 (1974).

    Article  Google Scholar 

  21. J. V. Narlikar,Introduction to Cosmology (Jones & Bartlet, 1983).

  22. D. M. Capper, G. Leibbrandt, and M. R. Medrano,Phys. Rev. D8 (1973) 4320.

    Article  Google Scholar 

  23. See e.g.(i)M. Veltman,Nucl. Phys. B7, 637 (1968),

    Article  Google Scholar 

  24. D. G. Boulware,Ann. Phys.56, 140 (1970).

    Article  Google Scholar 

  25. J. C. Taylor,Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge 1976), chap. 2.

    Google Scholar 

  26. C. Grosse-Knetter, The equivalence theorem for heavy-Higgs standard model and the gauged nonlinearσ-Model,Bull. Board: hap-ph 9405412.

  27. A. Kniehl,Phys. Rep.240, 211 (1994).

    Article  Google Scholar 

  28. S. Dittmaieret al., “On the significance of the electroweak precision data,” BI-TP 94/03.

  29. Ya. B. Zel'dovich,Pis'ma Zh. Exp. Teor. Fiz.6, 883 (1967) [JETP Lett.6, 316 (1967)].

    Google Scholar 

  30. A. D. Sakharov,Dok. Akad. Nauk SSSR177, 70 (1967) [Sov. Phys. Dokl.12, 1040 (1968)].

    Google Scholar 

  31. S. L. Adler,Rev. Mod. Phys.54, 729 (1982).

    Article  Google Scholar 

  32. S. D. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective Action in Quantum Gravity (IOP, Bristol, 1992).

    Google Scholar 

  33. S. D. Odintsov and I. L. Shapiro,Class. Quantum Gravit.9, 873 (1992).

    Article  Google Scholar 

  34. R. Mańka and J. Syska, Boson Condensation in the GSW Electroweak Theory, preprint University of Silesian 1993 (to be published inPhys. Rev. D).

  35. G. Pocsik, E. Lendvai, and G. Cynolter,Acta Phys. Pol. B24, 1495 (1993); see also G. Cynolter, E. Lendvai, and G. Pocsik,ρ-parameter in the vector condensate model of electroweak interactions,” preprint, Institute of Theoretical Physics, Eotvos Lorad University, Budapest.

    Google Scholar 

  36. See, e.g., L. N. LipatovSov. Phys. JETP90, 1536 (1986);R. Kirschner, L. N. Lipatov, and L. Szymanowski,Nucl. Phys. B (Proc. Suppl.)29A, 84 (1992); L. N. Lipatov,ibid., p. 89; V. S. Fadin and L. N. Lipatov,ibid., p. 93 and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Soltan Institute for Nuclear Studies, Warsaw, Poland

    Marek Pawłowski & Ryszard Raczka

  2. Interdisciplinary Laboratory for Natural and Humanistic Sciences, International School for Advanced Studies (SISSA), Trieste, Italy

    Ryszard Raczka

Authors
  1. Marek Pawłowski
  2. Ryszard Raczka

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp