121Accesses
37Citations
4 Altmetric
Abstract
A Higgsless model for strong, electroweak and gravitational interactions is proposed. This model is based on the local symmetry group SU(3)×SU(2)L×U(1)×C,where C is the local conformal symmetry group. The natural minimal conformally invariant form of total Lagrangian is postulated. It contains all standard model fields and gravitational interaction. Using the unitary gauge and the conformal scale fixing conditions, we can eliminate all four real components of the Higgs doublet in this model. However, the masses of vector mesons, leptons, and quarks are automatically generated and are given by the same formulas as in the conventional standard model. In this manner one gets the mass generation without the mechanism of spontaneous symmetry breaking and without the remaining real dynamical Higgs field. The gravitational sector is analyzed, and it is shown that the model admits in the classical limit the Einsteinian form of gravitational interactions.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
CDF Collaboration, FERMILAB-PUB-94/116-E.
Z. Hioki and R. Najima, “Is the standard eletroweak theory happy withm,∼ 174 GeV?,” preprint TOCUSHIMA 94-02, YCCP-9404.
OPAL Collaboration and K. Ahmet,Phys. Lett. B251, 211 (1990); ALEPH Collaboration, D. Decampet al., Phys. Lett. B245, 289; (1990) DELPHI Collaboration, P. Abreuet al., Z. Phys. C51, 25 (1991).
G. Altarelli, R. Barbieri, and F. Caravaglios,Nucl. Phys. B405, 3 (1993).
M. Pawlowski and R. Raczka, “Mass generation in the standard model without dynamical Higgs field,”Bull. Board: hep-ph 9403303.
J. Ellis, G. L. Fogli, E. Lisi,Phys. Lett. B318, 148 (1993).
G. Montagnaet al., “The top quark and the Higgs boson mass from LEP SLC and CDF Data,”Bull. Board: hep-ph 9407246.
J. Ellis, G. L. Fogli, and E. Lisi, CERN-TH.7261/94 and BARI-TH/177-94.
G. Altarelli, R. Barbieri, and S. Jadach,Nucl. Phys. B309, 3 (1992).
B. A. Kniehl, “High order corrections to Higgs-boson decays,”Bull. Board: hep-ph 9405317.
S. Dittmaier, C. Grosse-Knetter, and D. Schildknecht, “On the Role of the Higgs Mechanism in Present Electroweak Precision Tests,”Bull. Board: hep-th 9406378.
D. Caerupeel and M. Leblanc, “Mass Generation for Gauge Fields without Scalars”Bull. Board: hep-ph 9407029.
M. J. Herrero and E. R. Morales,Nucl. Phys. B418, 341 (1994).
U. Canutoet al., Phys. Rev. D16, 1643 (1977).
N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
R. M. Wald,General Relativity (The University of Chicago Press, Chicago 1984).
M. A. Castagnino and J. B. Sztrajman,J. Math. Phys.27, 1037 (1986).
R. Penrose,Ann. Phys.10, 171 (1960).
K. S. Stelle,Phys. Rev. D16, 953 (1977).
See, e.g., S. Deser and P. von Niewenhuizen,Phys. Rev. D10, 401 (1974).
J. V. Narlikar,Introduction to Cosmology (Jones & Bartlet, 1983).
D. M. Capper, G. Leibbrandt, and M. R. Medrano,Phys. Rev. D8 (1973) 4320.
See e.g.(i)M. Veltman,Nucl. Phys. B7, 637 (1968),
D. G. Boulware,Ann. Phys.56, 140 (1970).
J. C. Taylor,Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge 1976), chap. 2.
C. Grosse-Knetter, The equivalence theorem for heavy-Higgs standard model and the gauged nonlinearσ-Model,Bull. Board: hap-ph 9405412.
A. Kniehl,Phys. Rep.240, 211 (1994).
S. Dittmaieret al., “On the significance of the electroweak precision data,” BI-TP 94/03.
Ya. B. Zel'dovich,Pis'ma Zh. Exp. Teor. Fiz.6, 883 (1967) [JETP Lett.6, 316 (1967)].
A. D. Sakharov,Dok. Akad. Nauk SSSR177, 70 (1967) [Sov. Phys. Dokl.12, 1040 (1968)].
S. L. Adler,Rev. Mod. Phys.54, 729 (1982).
S. D. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective Action in Quantum Gravity (IOP, Bristol, 1992).
S. D. Odintsov and I. L. Shapiro,Class. Quantum Gravit.9, 873 (1992).
R. Mańka and J. Syska, Boson Condensation in the GSW Electroweak Theory, preprint University of Silesian 1993 (to be published inPhys. Rev. D).
G. Pocsik, E. Lendvai, and G. Cynolter,Acta Phys. Pol. B24, 1495 (1993); see also G. Cynolter, E. Lendvai, and G. Pocsik,ρ-parameter in the vector condensate model of electroweak interactions,” preprint, Institute of Theoretical Physics, Eotvos Lorad University, Budapest.
See, e.g., L. N. LipatovSov. Phys. JETP90, 1536 (1986);R. Kirschner, L. N. Lipatov, and L. Szymanowski,Nucl. Phys. B (Proc. Suppl.)29A, 84 (1992); L. N. Lipatov,ibid., p. 89; V. S. Fadin and L. N. Lipatov,ibid., p. 93 and references therein.
Author information
Authors and Affiliations
Soltan Institute for Nuclear Studies, Warsaw, Poland
Marek Pawłowski & Ryszard Raczka
Interdisciplinary Laboratory for Natural and Humanistic Sciences, International School for Advanced Studies (SISSA), Trieste, Italy
Ryszard Raczka
- Marek Pawłowski
Search author on:PubMed Google Scholar
- Ryszard Raczka
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Pawłowski, M., Raczka, R. A unified conformal model for fundamental interactions without dynamical Higgs field.Found Phys24, 1305–1327 (1994). https://doi.org/10.1007/BF02148570
Received:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative

