Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Gap junctions in excitable cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Gap junction channels are an integral part of the conduction or propagation of an action potential from cell to cell. Gap junctions have rather unique gating and permeability properties which permit the movement of molecules from cell to cell. These molecules may not be directly linked to action potentials but can alter nonjunctional processes within cells, which in turn can affect conduction velocity. The data described in this review reveal that, for the majority of excitable cells, there are two limiting factors, with respect to gap junctions, that affect the conduction/propagation of action potentials. These are (1) the total number of channels and (2) the selective permeability of the channels. Interestingly, voltage dependence and the time course of voltage inactivation (kinetics) are not rate limiting steps under normal physiological conditions for any of the connexins studied so far. Only specialized rectifying electrical synapses utilize strong voltage dependence and rapid kinetics to permit or deny the continued propagation of an action potential.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Barr, L., Dewey, M. M., and Berger, W. (1965).J. Gen. Physiol.48, 797–823.

    Article PubMed  Google Scholar 

  • Barr, L., Berger, W., and Dewey, M. M. (1968).J. Gen. Physiol.51, 346–368.

    Article  Google Scholar 

  • Beeler, G. W., and Reuter, H. (1977).J. Physiol.268, 177–210.

    PubMed  Google Scholar 

  • Benz, R. (1986). InIon Channel Reconstitution (Miller, C., ed.), Plenum Press, New York, pp. 553–573.

    Google Scholar 

  • Bennett, M. V. L., and Verselis, V. K. (1992).Sem. Cell Biol.3, 29–47.

    Google Scholar 

  • Bennett, M. V. L., Zheng, X., and Sogin, M. L. (1995).Prog. Cell Res.4, 3–8.

    Google Scholar 

  • Berger, W., and Barr, L. (1969).J Appl. Physiol.26, 378–382.

    PubMed  Google Scholar 

  • Beyer, E. C. (1993).Int. Rev. Cytol.137, 1–37.

    Google Scholar 

  • Blatz, A. L., and Magleby, K. L. (1984).J Gen. Physiol.84, 1–23.

    Article PubMed  Google Scholar 

  • Brink, P. R., (1991).J. Cardiovas. Electrophysiol.2, 360–366.

    Google Scholar 

  • Brink, P. R., and Dewey, M. M. (1978).J. Gen. Physiol.72, 67–86.

    Article PubMed  Google Scholar 

  • Brink, P. R., and Dewey, M. M. (1980).Nature285, 101–102.

    Article PubMed  Google Scholar 

  • Brink, P. R., and Fan, S. F. (1989).Biophys. J.56, 579–593.

    PubMed  Google Scholar 

  • Brink, P. R., and Ramanan, S. V. (1985).Biophys. J.48, 299–309.

    PubMed  Google Scholar 

  • Brink, P. R., Ramanan, S. V., and Christ, G. (1996).Am. J. Physiol. Cell, in press.

  • Bukauskas, F., Elfgand, C., Willecke, K., and Weingart, R. (1995).Pflugers Arch.429, 870–872.

    Article PubMed  Google Scholar 

  • Bullock, T. H. (1945).J. Neurophysiol.8, 55–71.

    Google Scholar 

  • Burt, J. M. (1991). InBiophysics of Gap Junction Channels (Perrachia, C., ed.), CRC Press, Boca Raton, Florida, pp. 75–96.

    Google Scholar 

  • Cole, W. C., Picone, J. B., and Sperelakis, N. (1988).Biophys. J.53, 809–818.

    PubMed  Google Scholar 

  • Dermietzel, R., and Spray, D. C. (1993).Trends Neurosci.16, 186–92.

    Article PubMed  Google Scholar 

  • Eccles, J.,et al. (1933).J. Physiol.77, 23–25.

    Google Scholar 

  • Fursphan, E. J., and Potter, D. D. (1957).Nature180, 342–343.

    PubMed  Google Scholar 

  • Fursphan, E. J., and Potter, D. D. (1959).J. Physiol.145, 289–325.

    PubMed  Google Scholar 

  • Fushiki, S., and Kinoshita, C. (1995).Progr. Cell Res.4, 239–244.

    Google Scholar 

  • Goodenough, D. A. (1975).Cold Spring Harbor Symp. Quant. Biol.40, 37–48.

    Google Scholar 

  • Jaslove, S. W., and Brink, P. R. (1986).Nature323, 63–65.

    Article PubMed  Google Scholar 

  • Jaslove, S. W., and Brink, P. R. (1987). InCell-to-Cell Communication (DeMello, C., ed.), Plenum Press, New York.

    Google Scholar 

  • Little, T. L., Xia, J., and Duling, B. R. (1995).Circ. Res.76, 498–504.

    PubMed  Google Scholar 

  • Lowenstein, W. R. (1981).Physiol. Rev.61, 829–913.

    PubMed  Google Scholar 

  • Makowski, L., Casper, D., Philips, W., Baker, T.,et al. (1984).Biophys. J.45, 208–218.

    PubMed  Google Scholar 

  • Margiotta, J. F., and Walcott, B. (1983).Nature305, 52–55.

    Article PubMed  Google Scholar 

  • Mirro, J., Bailey, J. D., and Watnabe, A. M. (1980). InThe Slow Inward Current and Cardiac Arrythmias (Zipes, D. P., Bailey, J. C., and Eiharrar, V., eds.), Martinus Nijhoff Publishers, pp. 111–127.

  • Moreno, A. P., Fishman, G. I., Beyer, E. C., and Spray, D. C. (1995).Prog. Cell Res.4, 405–408.

    Google Scholar 

  • Neyton, J., and Trautmann, A. (1985).Nature317, 331–335.

    Article PubMed  Google Scholar 

  • Robinson, S. R., Hampson, E. C. G. M., Munro, M. N., and Vaney, D. I. (1993).Science262, 1072–1074.

    PubMed  Google Scholar 

  • Rudiusli, A., and Weingart, R. (1991). InBiophysics of Gap Junction Channels (Perrachia, C., ed.), CRC Press, Boca Raton, Florida, pp. 43–56.

    Google Scholar 

  • Spray, D. C., and Bennett, M. V. L. (1985).Ann. Rev. Physiol.47, 281–303.

    Article  Google Scholar 

  • Tsien, R., and Weingart, R. (1976).J. Physiol.260, 117–141.

    PubMed  Google Scholar 

  • Veenstra, R. D., Wang, Z., Beyer, E. C., Ramanan, S. V., and Brink, P. R. (1994a).Biophys. J.66, 1915–1928.

    PubMed  Google Scholar 

  • Veenstra, R. D., Wang, Z., Beyer, E. C., and Brink, P. R. (1994b).Circ. Res.268, 706–712.

    Google Scholar 

  • Veenstra, R. D., Wang, H. Z., Beblo, D. A., Cliton, M. G., Harris, A. L., Beyer, E. C., and Brink, P. R. (1995).Cir. Res.77, 1156–1165.

    Google Scholar 

  • Verselis, V. K., Bargiello, T. A., Rubin, J. B., and Bennett, M. V. L. (1994).Nature368, 348–351.

    Article PubMed  Google Scholar 

  • Wang, H.-Z., Li, J., Lemanski, L. F., and Veenstra, R. D. (1992).Biophys. J.63, 139–151.

    PubMed  Google Scholar 

  • Weidmann, S. (1966).J. Physiol.187, 322–342.

    Google Scholar 

  • Weingart, R. (1986).J. Physiol.370, 267–284.

    PubMed  Google Scholar 

  • White, T. W., Paul, D., Goodenough, D. A., and Bruzzone, R. (1995).Mol. Biol. Cell6, 459–470.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physiology and Biophysics, State University of New York at Stony Brook, 11794, Stony Brook, New York

    Peter R. Brink, Kerry Cronin & S. V. Ramanan

Authors
  1. Peter R. Brink
  2. Kerry Cronin
  3. S. V. Ramanan

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp