890Accesses
33Citations
21 Altmetric
3Mentions
Abstract
Based on simple CIPW norms for the proposed terrestrial upper mantle material, it is shown that if the Moon fissioned from the Earth and gravitationally differentiated, it could have a 72 km thick anorthosite (An97) crust, a calcium poor (3.8% by weight) pyroxenite upper mantle 100 Mg/Mg + Fe = 75 to 80) ending at a depth of 313 km and a dunite (Fo93_95) lower mantle below a depth of 313 km. Refinements of these simple norm models, based on the cooling history, crystallization sequence and the variations of the 100 Mg/Mg + Fe ratio of the liquid and crystals during the crystallization sequence, indicate that the final form of such a Moon could have the following properties: (1) a primitive, cumulate anorthosite - minor troctolite crust with intrusive and extrusive feldspathic basalts and KREEP rich norites; the thickness of this crust would be 75 km; (2) a zone in the bottom of the crust and the top of the upper mantle which is rich in KREEP, the incompatible elements, silica, and possibly voltiles; this zone would be the source area for the upland feldspathic basalts, KREEP rich norites and KREEP and silica rich fluids; (3) an upper mantle between the depths of 75 km and 350 to 400 km which consists of peridotite containing 80–85% pyroxene (Wo10En68_72Fs18_22) and 15–20% olivine (Fo75_80); the Al2O3 content of the upper mantle is ∼ 3%; the peridotite layer would be the source area for mare basalts and; (4) a lower mantle below a depth of 350–400 km which consists of dunite (Fo93_97).
The cooling history of such a moon indicates that the primitive anorthosite crust would have been completely formed within 108 yr after fission. The extrusion and intrusion of upland basalts and KREEP rich norites and the metamorphism of the crustal rocks via KREEP and silica rich fluids would have ended about 4 × 109 yr ago when cooling well below the solidus reached a depth of 150 km. As cooling continied, the only source of magmas after 4 × 109 yr ago would have been the peridotite upper mantle, i.e. the source area of the mare basalts. Extrusion of mare basalts ended when cooling below the solidus reached the top of the refractory dunite lower mantle 3-3.3 × 109 yr ago.
Thus, it is shown that the chemistry, primary lithology, structure and developmental history of a fissioned Moon readily match those known for the real Moon. As such, the models presented in this paper strongly support the fission origin of the Moon.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Akimoto, S. I.: 1972, in A. R. Ritsema (ed.),The Upper Mantle, Elsevier Publishing Co., Amsterdam, pp. 161.
Albee, A. L., Burnett, D. S., Chodos, A. A., Heines, W. L., Huneke, J. L., Papanastassiou, D. A., Podosed, F. A., Russ III, G. P., and Wasserburg, G. J.: 1970,Earth Planetary Sci. Letters9, 137.
Anders, E., Ganapathy, R., Keays, R. R., Laul, J. C., and Morgan, J. W.: 1971,Proc. 2nd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 2,2, 1021.
Anderson, O.: 1915,Am. J. Sci. Ser. 4,39, 407.
Anderson, D. L.: 1973,Earth Planetary Sci. Letters18, 301
El Goresy, A., Ramdohr, P., Pavicevic, M., Medenbach, O., Müller, O., and Gentner, W.: 1973,Earth Planetary Sci. Letters18, 411.
Engel, A. E. and Engel, C. G.: 1970,Science167, 527.
Epstein, S. and Taylor, H. P., Jr.: 1972,Proc. 3rd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3,2, 1429.
Ganapathy, R., Keays, R. R., Laul, J. C., and Anders, E.: 1970,Proc. Apollo 11 Lunar, Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 1,2, 1117.
Green, D. H.: 1968, in H. H. Hess (ed.),Basalts, Vol. 2, Interscience Publishers, New York, pp. 835.
Green, D. H. and Ringwood, A. E.: 1973,Earth Planetary Sci. Letters19, 1.
Green, D. H., Ringwood, A. E., Ware, N. G., and Hibberson, W. O.: 1972,Proc. 3rd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3,1, 197.
Green, D. H., Ringwood, A. E., Ware, N. G., Hibberson, W. O., Major, A., and Kiss, E.: 1971,Proc. 2nd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 2,1, 601.
Hubbard, N. J. and Gast, P. W.: 1970,Earth Planetary Sci. Letters9, 181.
Hubbard, N. J. and Gast, P. W.: 1971,Proc. 2nd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 2,2, 999.
Hubbard, N. J., Rhodes, J. M., and Gast, P. W.: 1973,Science181, 339.
Hubbard, N. J., Gast, P. W., Rhodes, J. M., Bansal, B. M., and Wiesmann, H.: 1972,Proc. 3rd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3,2, 1161.
Jaeger, J. C.: 1968, in H. H. Hess (ed.),Basalts, Vol. 2, Interscience Publishers, New York, pp. 503.
Kirsten, T., Horn, P. and Heymann, D.: 1973,Earth Planetary Sci. Letters20, 125.
Kridelbaugh, S. J., McKay, G. A., and Weill, D. F.: 1973,Science179, 71.
Latham, G. V., Ewing, M., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Toksőz, N., Lammlein, D., and Duennebier, F.: 1972, Apollo 16 Preliminary Science Report.
Lingenfelter, R. E. and Schubert, G.: 1973,The Moon7, 172.
Lunar Sample Preliminary Examination Team: 1970, Apollo 12 Preliminary Science Report.
Lunar sample Preliminary Examination Team: 1972, Apollo 15 Preliminary Science Report.
MacDonald, G. J. F.: 1966, in B. G. Marsden and A. G. W. Cameron (eds.),The Earth-Moon System, Plenum Press, New York, pp. 165.
Mason, B. and Melson, W. G.: 1970,The Lunar Rocks, Wiley-Interscience, New York, pp. 32.
Meyer, C. Jr., Brett, R., Hubbard, N. J., Morrison, D. A., McKay, D. S., Aitken, F. K., Takeda, H., and Schonfeld, W.: 1971,Proc. 2nd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 2,1, 393.
Morgan, J. W., Krähenbühl, U., Ganapathy, R. and Anders, E.: 1972,Proc. 3rd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3,2, 1361.
Nakamura, Y. and Latham, C. V.: 1969,J. Geophys. Res.74, 3771.
Nakamura, Y., Lammlein, D., Latham, G., Ewing, M., Dorman, J., Press, F., and Toksőz, N.: 1973,Science181, 49.
Neukum, G. and Arkani-Hamed, J.: in preparation.
O'Keefe, J. A.: 1969,J. Geophys. Res.74, 2758.
Öpik, E. J.: 1961,Ann. Acad. Sci. FennicaeA3, 185.
Papanastassiou, D. A. and Wasserburg, G. J.: 1972,Earth Planetary Sci. Letters16, 289.
Papanastassiou, D. A. and Wasserburg, G. J.: 1973,Earth Planetary Sci. Letters17, 324.
Prinz, M., Dowty, E., Keil, K., and Buchn, T. E.: 1973,Science179, 74.
Ringwood, A. E.: 1960,Geochim. Cosmochim. Acta20, 241.
Ringwood, A. E.: 1966,Geochim. Cosmochim. Acta30, 41.
Ringwood, A. E.: 1970,Earth Planetary Sci. Letters8, 131.
Ringwood, A. E. and Essene, E.: 1970,Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 1,1, 769.
Ringwood, A. E. and Green, D. H.: 1967,Earth Planetary Sci. Letters3, 151.
Sjorgen, W. L., Gottlieb, P., Muller, P. M., and Wollenhaupt, W.: 1972,Science175, 165.
Solomon, S. C. and Toksőz, M. N.: 1973,Phys. Earth Planetary Interiors7, 15.
Terra, F., Papanastassiou, D. A., and Wasserburg, G. J.: 1973, presented at theFourth Lunar Sci. Conf.
Toksőz, M. N. and Solomon, S. C.: 1973,The Moon7, 251.
Toksőz, M. N., Press, F., Dainty, A., Anderson, K., Latham, G., Ewing, M., Dorman, J., Lammlein, D., Sutton, G., and Duennebier, F.: 1972,Proc. 3rd Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3,3, 2527.
Weill, D. F., Grieve, R. A., McCallum, I. S., and Bottinga, Y.: 1971,Proc. 2nd Lunar Sci. Conf., Geochim. Cismochim. Acta, Suppl. 2,1, 413.
Wise, D. U.: 1963,J. Geophys. Res.68, 1547.
Wise, D. U.: 1969,J. Geophys. Res.74, 6034.
Wood, J. A.: 1970,J. Geophys. Res.75, 6497.
Wood, J. A.: 1972,Icarus16, 462.
Author information
Authors and Affiliations
Max-Planck-Institut für Kernphysik, Heidelberg, FRG
Alan B. Binder
Science Applications Inc., 60 W. Giacondia Way, Tucson, Ariz., USA
Alan B. Binder
- Alan B. Binder
Search author on:PubMed Google Scholar
Additional information
Guest Scientist, supported by the Alexander von Humboldt-Stiftung.
Permanent Address.
Rights and permissions
About this article
Cite this article
Binder, A.B. On the origin of the moon by rotational fission.The Moon11, 53–76 (1974). https://doi.org/10.1007/BF01877794
Received:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


