Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

An intrinsic characterization of Kähler manifolds

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Bombieri, E., Husemoller, D.: Classification and embeddings of surfaces. Proc. of Symp. in Pure Math. AMS29, 329–420 (1975)

    Google Scholar 

  2. Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  3. Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs, N.J.: Prentice-Hall 1965

    Google Scholar 

  4. Harvey, R.: Holomorphic chains and their boundaries. Proc. Symp. Pure Math.30, Part I, AMS, Providence, R.I. (1977), pp. 309–382

    Google Scholar 

  5. Harvey, R., Knapp, A.W.: Positivep, p forms, Wirtinger's inequality, and currents. Proc. Tulane Conf. on Value Distributions, Part A, pp. 49–62. New York: Marcel Dekker 1973

    Google Scholar 

  6. Harvey, R., Lawson, Jr., H.B.: Calibrated foliations. Amer. J. Math.104, 607–643 (1982)

    Google Scholar 

  7. Harvey, R., Lawson, Jr., H.B.: Calibrated geometries. Acta Math.148, 47–157 (1982)

    Google Scholar 

  8. Kodaira, K.: On the structure of compact complex analytic surfaces, I. Amer. J. Math.86, 751–798 (1964)

    Google Scholar 

  9. Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math.143, 261–295 (1983)

    Google Scholar 

  10. Miyaoka, Y.: Kähler metrics on elliptic surfaces. Proc. Japan Acad.50, 533–536 (1974)

    Google Scholar 

  11. Morrow, J., Kodaira, K.: Complex manifolds. New York: Holt-Rinehart and Winston 1971

    Google Scholar 

  12. Schaefer, H.H.: Topological vector spaces. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  13. Siu, Y.-T.: EveryK3 surface is Kähler. Invent. Math. (to appear)

  14. Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math.36, 225–255 (1976)

    Google Scholar 

  15. Todorov, A.N.: Applications of the Kähler-Einstein-Calabi-Yau metric to moduli ofK3 surfaces. Invent. Math.61, 251–265 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, Rice University, Post Office Box 1892, 77251, Houston, TX, USA

    Reese Harvey & H. Blaine Lawson Jr.

  2. Department of Mathematics, S.U.N.Y., 11794, Stony Brook, NY, USA

    Reese Harvey & H. Blaine Lawson Jr.

Authors
  1. Reese Harvey

    You can also search for this author inPubMed Google Scholar

  2. H. Blaine Lawson Jr.

    You can also search for this author inPubMed Google Scholar

Additional information

Research supported by NSF Grants MPS75-05270 and MCS8301365

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp