79Accesses
3Altmetric
Abstract
In this paper we explore various locus problems whose solutions involve the Neuberg cubic of the scalene triangle in the plane. We use analytical geometry to show that the Neuberg equation describes the essential part of the locus in each of these problems. In this way we discover new characteristics of the Neuberg cubic that has been at the focus of attention in the recent renaissance of triangle geometry.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Bresson,Question 2119, Mathesis (1922), 431.
Bresson and M.Legros,Question 2119, Mathesis (1923), 178–180.
B. H. Brown,The 21-point cubic, Amer. Math. Monthly,32 (1925), 110–115.
B. H. Brown,Note on the preceding paper, Amer. Math. Monthly,32 (1925), 247.
Z.Čerin,Locus of intersections of Euler lines, Rad HAZU, (Preprint).
Z. Čerin,An extraordinary locus recognised, Math, and Inf. Quar.6 (1996), 101–106.
Z.Čerin,On the cubic of Napoleon, Journal of Geometry, (to appear).
H. S. M. Coxeter,Cubic Curves related to a Quadrangle, C. R. Math. Rep. Acad. Sci. Canada15 (1993), 237–242.
H. S. M. Coxeter,Some applications of trilinear coordinates, Linear Algebra and Its Applications226–228 (1995), 375–388.
H. M. Cundy andC. F. Parry,Some cubic curves associated with a triangle, Journal of Geometry,53 (1995), 41–66.
R. Deaux,Introduction to the geometry of complex numbers, Ungar Publishing Co., New York, 1956.
H. L. Dorwart,The Neuberg cubic: A nostalgic look, California Mathematics3 (1978), 31–38.
R. H. Eddy andJ. B. Wilker,Plane mappings of isogonal-isotomic type, Soochow Journal of Math.18 (1992), 123–126.
L. Hahn,Complex numbers and geometry, MAA, Washington, 1994.
E.Hain,Question 653, Mathesis (1890),22.
Ross Honsberger,Episodes in nineteenth and twentieth century Euclidean geometry, MAA, New Mathematical Library no. 37, Washington, 1995.
R. A. Johnson,Advanced Euclidean Geometry, Dover Publ., Washington, 1964.
C. Kimberling,Central points and central lines in the plane of a triangle, Mathematics Magazine,67 (1994), 163–187.
T. W. Moore andJ. H. Neelley,The circular cubic on twenty-one points of a triangle, Amer. Math. Monthly,32 (1925), 241–246.
F. Morley,Note on Neuberg cubic curve, Amer. Math. Monthly,32 (1925), 407–411.
F. Morley andF. V. Morley,Inversive Geometry, Chelsea Publ. Co., New York, 1954.
J. Neuberg,Memoire sur la tetraedre, F. Hayez, Bruxelles, 1884.
J.Neuberg,Sur la parabole de Kiepert, Ann. de la Soc. sci. de Bruxelles, (1909-1910), 1–11.
J. Neuberg,Bibliographie du triangle et du tétraèdre, Mathesis,38 (1924), 241.
D. Pedoe,A course of geometry, Cambridge Univ. Press, Cambridge, 1970.
G. M. Pinkernell,Cubic curves in the triangle plane, Journal of Geometry55 (1996), 141–161.
P. Rubio,Cubic lines relative to a triangle, Journal of Geometry34 (1989), 152–171.
H. Schwerdtfeger,Geometry of complex numbers, Oliver and Boyd, Toronto, 1962.
J. Tabov,An extraordinary locus, Math, and Inf. Quar.,4 (1994), 70.
O. Thalberg,Application of the theorem of residuation to the 21-point cubic, Amer. Math. Monthly,32 (1925), 412–414.
I. M. Yaglom,Complex numbers in geometry, Academic Press, New York, 1968.
P. Yff,Two families of cubics associated with a triangle, In Eves' Circles (Joby Milo Anthony, editor), MAA, Washington, 1993.
Author information
Authors and Affiliations
Kopernikova 7, 10010, Zagreb, Croatia
Zvonko Čerin
- Zvonko Čerin
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Čerin, Z. Locus properties of the Neuberg cubic.J Geom63, 39–56 (1998). https://doi.org/10.1007/BF01221237
Received:
Revised:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative