Abstract
Fibonacci words have many amazing combinatorial properties. Like Fibonacci numbers they are easy to define, and many of their properties are easy to prove, once discovered. The aim of this survey is to sketch some of the combinatorial properties related to factors (subwords) of Fibonacci words, and also to describe basic arithmetic operations (i.e. normalization and addition) in the Fibonacci number system. No attempt was made to be complete.
Contrat ADI 83/695
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

New algebraic and geometric constructs arising from Fibonacci numbers

On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number
References
S. Beatty, Problem 3173, Amer. Math. Monthly 33 (1926). p. 159 solutions ibid. 34 (1927). p. 159.
L. Carlitz. Fibonacci representations. Fib. Quart. (1968). p. 193–220
L. Carlitz, V.L. Hoggatt Jr, R. Scoville, Fibonacci representations. Fib. Quart. 10 (1972). p. 1–28.
E. Coven, G. Hedlund, Sequences with minimal block growth. Math. Syst. Theory 7 (1973). p. 138–153.
M. Crochemore, An optimal algorithm for computing repetitions of a word. Inf. Process. Letters 12 (1981), p. 244–250.
K. Culik II. A. Salomaa. Ambiguity and decision problems concerning number systems. Information and Control56. 1984. 139–153.
A. de Luca, A combinatorial property of the Fibonacci words. Inf. Process. Letters 12 (1981). p. 193–195.
A. de Luca, A. Restivo, Representations of Integers and Language Theory. MFCS. 1984. Lecture Notes Comp. Sciences176. 407–415.
S. Eilenberg. “Automata. Languages and Machines”. Academic Press 1974.
A.S. Fraenkel. Systems of Numeration. American Math. Monthly, to appear.
C. Frougny. On linear Numeration Systems, in preparation.
J. Honkala. Bases and ambiguity of number systems. Theoret. Comput. Sci.,31, 1984. 61–71.
J. Karhumaki. On cube-free ω-words generated by binary morphisms. Discr. Appl. Math. 5 (1983). p. 279–297.
D. Knuth. “The Art of Computer Programming”. Vol. I. Addison Wesley 1968.
D. Knuth. J. Morris. V. Pratt. Fast pattern matching in strings. SIAM J. Comput. 6 (1977). p. 323–350.
G. Rauzy. Mots infinis en arithmétique, in M. Nivat, D. Perrin (eds), “Automata on infinite words”, Lecture Notes in Computer Science 192. 1985. Springer, p. 165–171.
G. Rozenberg. A. Salomaa. “The Mathematical Theory of L Systems”. Academic Press. 1980.
J. Sakarovitch. Easy multiplication. Rapport LITP 85–41. to appear.
P. Seebold. Propriétés combinatoires des mots infinis engendrés par certains morphismes. Thèse de 3ème cycle. Rapport LITP 85–16.
K. B. Stolarsky. Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull 19 (1976), p. 473–482.
E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Royale des Sciences de Liège. 1972. p. 179–182.
Author information
Authors and Affiliations
L.I.T.P., Université Paris VI, France
Jean Berstel
- Jean Berstel
You can also search for this author inPubMed Google Scholar
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Berstel, J. (1986). Fibonacci Words — A Survey. In: The Book of L. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95486-3_2
Download citation
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative