Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Fibonacci Words — A Survey

  • Chapter

Abstract

Fibonacci words have many amazing combinatorial properties. Like Fibonacci numbers they are easy to define, and many of their properties are easy to prove, once discovered. The aim of this survey is to sketch some of the combinatorial properties related to factors (subwords) of Fibonacci words, and also to describe basic arithmetic operations (i.e. normalization and addition) in the Fibonacci number system. No attempt was made to be complete.

Contrat ADI 83/695

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Beatty, Problem 3173, Amer. Math. Monthly 33 (1926). p. 159 solutions ibid. 34 (1927). p. 159.

    Article MathSciNet  Google Scholar 

  2. L. Carlitz. Fibonacci representations. Fib. Quart. (1968). p. 193–220

    Google Scholar 

  3. L. Carlitz, V.L. Hoggatt Jr, R. Scoville, Fibonacci representations. Fib. Quart. 10 (1972). p. 1–28.

    MathSciNet MATH  Google Scholar 

  4. E. Coven, G. Hedlund, Sequences with minimal block growth. Math. Syst. Theory 7 (1973). p. 138–153.

    Article MathSciNet MATH  Google Scholar 

  5. M. Crochemore, An optimal algorithm for computing repetitions of a word. Inf. Process. Letters 12 (1981), p. 244–250.

    MathSciNet MATH  Google Scholar 

  6. K. Culik II. A. Salomaa. Ambiguity and decision problems concerning number systems. Information and Control56. 1984. 139–153.

    Article MathSciNet  Google Scholar 

  7. A. de Luca, A combinatorial property of the Fibonacci words. Inf. Process. Letters 12 (1981). p. 193–195.

    Article MATH  Google Scholar 

  8. A. de Luca, A. Restivo, Representations of Integers and Language Theory. MFCS. 1984. Lecture Notes Comp. Sciences176. 407–415.

    Google Scholar 

  9. S. Eilenberg. “Automata. Languages and Machines”. Academic Press 1974.

    Google Scholar 

  10. A.S. Fraenkel. Systems of Numeration. American Math. Monthly, to appear.

    Google Scholar 

  11. C. Frougny. On linear Numeration Systems, in preparation.

    Google Scholar 

  12. J. Honkala. Bases and ambiguity of number systems. Theoret. Comput. Sci.,31, 1984. 61–71.

    Article MathSciNet MATH  Google Scholar 

  13. J. Karhumaki. On cube-free ω-words generated by binary morphisms. Discr. Appl. Math. 5 (1983). p. 279–297.

    Article MathSciNet  Google Scholar 

  14. D. Knuth. “The Art of Computer Programming”. Vol. I. Addison Wesley 1968.

    Google Scholar 

  15. D. Knuth. J. Morris. V. Pratt. Fast pattern matching in strings. SIAM J. Comput. 6 (1977). p. 323–350.

    Article MathSciNet MATH  Google Scholar 

  16. G. Rauzy. Mots infinis en arithmétique, in M. Nivat, D. Perrin (eds), “Automata on infinite words”, Lecture Notes in Computer Science 192. 1985. Springer, p. 165–171.

    Google Scholar 

  17. G. Rozenberg. A. Salomaa. “The Mathematical Theory of L Systems”. Academic Press. 1980.

    Google Scholar 

  18. J. Sakarovitch. Easy multiplication. Rapport LITP 85–41. to appear.

    Google Scholar 

  19. P. Seebold. Propriétés combinatoires des mots infinis engendrés par certains morphismes. Thèse de 3ème cycle. Rapport LITP 85–16.

    Google Scholar 

  20. K. B. Stolarsky. Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull 19 (1976), p. 473–482.

    Article MathSciNet MATH  Google Scholar 

  21. E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Royale des Sciences de Liège. 1972. p. 179–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. L.I.T.P., Université Paris VI, France

    Jean Berstel

Authors
  1. Jean Berstel

    You can also search for this author inPubMed Google Scholar

Rights and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berstel, J. (1986). Fibonacci Words — A Survey. In: The Book of L. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95486-3_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp