Part of the book series:Encyclopedia of Physics / Handbuch der Physik ((PHYSIK 3,volume 3 / 8 / 1))
1595Accesses
Abstract
Classical fluid mechanics is a branch of continuum mechanics; that is, it proceeds on the assumption that a fluid is practically continuous and homogeneous in structure. The fundamental property which distinguishes a fluid from other continuous media is that it cannot be in equilibrium in a state of stress such that the mutual action between two adjacent parts is oblique to the common surface. Though this property is the basis of hydrostatics and hydrodynamics, it is by itself insufficient for the description of fluid motion. In order to characterize the physical behavior of a fluid the property must be extended, given suitable analytical form, and introduced into the equations of motion of a general continuous medium, this leading ultimately to a system of differential equations which are to be satisfied by the, velocity, density, pressure, etc. of an arbitrary fluid motion. In this article we shall consider these differential equations, their derivation from fundamental axioms, and the various forms which they take when more or less special assumptions concerning the fluid or the fluid motion are made.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
I. General works
Appell, P.: Traité de Mécanique Rationelle, Vol. 3, Equilibre et Mouvement des Milieux Continus, 3rd edit. Paris 1921.
Bateman, H., H.L.Dryden and F.D.Murnaghan: Hydrodynamics. Bull. National Res. Council No. 84. Washington 1932. Reprinted New York 1955.
Bjerknes, V.: Physikalische Hydrodynamik. Berlin 1933.
Friedrichs, K. O., and R. VonMises: Fluid Dynamics. Notes: Brown University 1942.
Goldstein, S.: Lectures on Fluid Mechanics, Seminar in Applied Mathematics. Boulder 1957.
Hamel, G.: Theoretische Mechanik. Berlin 1949.
Hamel, G.: Mechanik der Kontinua. Stuttgart 1956.
Lamb, H.: Hydrodynamics, 6th edit. Cambridge 1932.
Lichtenstein, L.: Grundlagen der Hydromechanik. Berlin 1929.
Milne-Thomson, L.M.: Theoretical Hydrodynamics, 3rd edit. New York 1950.
Prandtl, L.: Strömungslehre. Braunschweig 1942. English edition, New York 1952.
Prandtl, L., and 0. G.Tietjens: Hydro-und Äromechanik. Berlin 1929. English edition, New York 1934.
Villat, H.: Mécanique des fluides, 2nd. edit. Paris 1938.
Bergman, S., and M.Schiffer: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. New York 1953.
Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York 1958.
Birkhoff, G.: Hydrodynamics, A Study in Logic, Fact, and Similitude. Princeton 1950.
Courant, R., and K. O.Friedrichs: Supersonic Flow and Shock Waves. New York 1948.
Hadamard, J.: Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique. Paris 1903.
Liepmann, H.W., and A.Roshko: Elements of Gasdynamics. New York 1957.
Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge 1955.
Mises, R. von: Mathematical Theory of Compressible Fluid Flow. New York 1958.
Oseen, C.W.: Neuere Methoden und Ergebnisse der Hydrodynamik. Leipzig 1927.
Oswatitsch, K.: Gasdynamik. Wien 1952. English version by G. Kuerti. New York 1956.
Sauer, R.: Einführung in die Theoretische Gasdynamik, 2. Aufl. Berlin 1951.
Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow, 2 vols. New York 1953.
Truesdell, C.: The Kinematics of Vorticity. Indiana University 1954.
Truesdell, C.: Vorticity and the thermodynamics state in a gas flow, Fasc. 119, Memorial des Sciences Mathématiques. Paris 1952.
Villat, H.: Leçons sur la Théorie des Tourbillons. Paris 1930.
Villat, H.: Leçons sur les Liquides Visqueux. Paris 1943.
Chapman, S., and T. G.Cowling: The Mathematical Theory of Non-Uniform Gases, 2nd edit. Cambridge 1952.
Epstein, P. S.: Textbook of Thermodynamics. New York 1937.
Guggenheim, E.: Advanced Thermodynamics. New York and Amsterdam 1949.
Keenan, J.H.: Thermodynamics. New York 1941.
Patterson, G.N.: Molecular Flow of Gases. New York 1956.
High Speed Aerodynamics and Jet Propulsion, Vol. 1, Thermodynamics and Physics of Matter. Edit. by F. ROSSINI. Princeton 1955.
Advances in Applied Mechanics, Vols. 1 to 4. New York 1948 to 1956.
Handbuch der Experimental-Physik (Wien-Harms), Bd. IV, Hydrodynamik. Leipzig 1931.
Handbuch der Physik (Geiger-Scheel) Bd. V, Grundlagen der Mechanik. Berlin 1927.
Handbuch der Physik (Geiger-Scheel), Bd. VII, Mechanik der flüssigen und gasförmigen Körper. Berlin 1927.
High Speed Aerodynamics and Jet Propulsion, Vol. 6, General Theory of High Speed Aerodynamics. Edit. by W.R. SEARS. Princeton 1954.
High Speed Aerodynamics and Jet Propulsion, Vol. 3, Foundations of Gas Dynamics. Edit. by H.W. EMMOxs. Princeton 1956.
Modern Developments in Fluid Dynamics, 2 vols. Edit. by S.Goldstein. Oxford 1938.
Modern Developments in Fluid Dynamics, High Speed Flow, 2 vols. Edit. by L. HoWARTH. Oxford 1953.
Proceedings of Symposia in Applied Mathematics, Vol. 1, Non-linear Problems in Mechanics of Continua. New York 1949.
Courant, R., and D.Hilbert: Methoden der Mathematischen Physik, Bd. 2. Berlin 1937.
Kellogg, O. D.: Foundations of Potential Theory. Berlin 1929.
Michal, A.: Matrix and Tensor Calculus. New York 1947.
Phillips, H. B.: Vector Analysis. New York 1933.
- James Serrin
You can also search for this author inPubMed Google Scholar
Editor information
Rights and permissions
Copyright information
© 1959 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg
About this chapter
Cite this chapter
Serrin, J. (1959). Mathematical Principles of Classical Fluid Mechanics. In: Truesdell, C. (eds) Fluid Dynamics I / Strömungsmechanik I. Encyclopedia of Physics / Handbuch der Physik, vol 3 / 8 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45914-6_2
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-45916-0
Online ISBN:978-3-642-45914-6
eBook Packages:Springer Book Archive
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative