1427Accesses
29Citations
TheBorn rule provides a link between the mathematical formalism of quantum theory and experiment, and as such is almost single-handedly responsible for practically all predictions of quantum physics. In the history of science, on a par with the ► Heisenberg uncertainty relations, the ► Born rule is often seen as a turning point where ► indeterminism entered fundamental physics. For these two reasons, its importance for the practice and philosophy of science cannot be overestimated.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 22307
- Price includes VAT (Japan)
- Softcover Book
- JPY 27884
- Price includes VAT (Japan)
- Hardcover Book
- JPY 35749
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.Primary Literature
M. Born: Quantenmechanik der Stoßvorgänge. Z. Phys.38, 803–827 (1926).
P. Dirac: The physical interpretation of the quantum dynamics. Proc. R. Soc. Lond.A113, 621–641 (1926).
A. Einstein & M. Born:Briefwechsel 1916–1955 (Langen Müller, München 2005).
W. Heisenberg:Physics and Philosophy: The Revolution in Modern Science. (Allen & Unwin, London 1958).
P. Jordan: Über quantenmechanische Darstellung von Quantensprügen. Z. Phys.40, 661–666 (1927).
P. Jordan: Über eine neue Begründung der Quantenmechanik. Z. Phys.40, 809–838 (1927).
J. von Neumann:Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932). English translation:Mathematical Foundations of Quantum Mechanics (Princeton University Press, Berlin 1955).
W. Pauli: Über Gasentartung und Paramagnetismus. Z. Phys.41, 81–102 (1927).
Secondary Literature
D.J. Baker: Measurement outcomes and probability in Everettian quantum mechanics. Stud. Hist. Philos. Mod. Phys.38, 153–169 (2007).
H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs, R. Schack: Quantum probability from decision theory? Proc. Roy. Soc. Lond.A456, 1175–1182 (2000).
A. Cassinello & J.L. Sanchez-Gomez: On the probabilistic postulate of quantum mechanics. Found. Phys.26, 1357–1374 (1996).
C. Caves & R. Schack: Properties of the frequency operator do not imply the quantum probability postuate. Ann. Phys. (N.Y.)315, 123–146 (2005).
D. Deutsch: Quantum theory of probability and decisions. Proc. R. Soc. Lond.A455, 3129– 3137 (1999).
E. Farhi, J. Goldstone & S. Gutmann: How probability arises in quantum mechanics. Ann. Phys. (N.Y.)192, 368–382 (1989).
T.L. Fine:Theories of Probability (Academic, New York, 1978).
D. Finkelstein: The logic of quantum physics. Trans. N. Y. Acad. Sci.25, 621–637 (1965).
D. Gillies:Philosophical Theories of Probability (Cambridge University Press, Cambridge 2000).
A. Hajek: Interpretations of probability. InThe Stanford Encyclopedia of Philosophy, ed. by Edward N. Zalta,http://www.science.uva.nl/seop/entries/probability-interpret/.
J.B. Hartle: Quantum mechanics of individual systems. Am. J. Phys.36, 704–712 (1968).
J. Mehra & H. Rechenberg:The Historical Development of Quantum Theory. Vol. 6: The Completion of Quantum Mechanics 1926–1941. Part 1: The Probabilistic Interpretation and the Empirical and Mathematical Foundation of Quantum Mechanics, 1926–1936 (Springer, New York 2000).
G.K. Pedersen:Analysis Now (Springer, New York 1989).
J. von Plato:Creating Modern Probability (Cambridge University Press, Cambridge, 1994).
S. Saunders: Derivation of the Born rule from operational assumptions. Proc. R. Soc. Lond.A460, 1771–1788 (2004).
E. Scheibe:The Logical Analysis of Quantum Mechanics (Pergamon Press, Oxford 1973).
M. Schlosshauer & A. Fine: On Zureks derivation of the Born rule. Found. Phys.35, 197–213 (2005).
D. Wallace: Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation. Stud. Hist. Philos. Mod. Phys.34 (2003), 415–438.
W.H. Zurek: Probabilities from entanglement, Born's rulepk = |Ψk#x01C0;2 from envariance, Phys. Rev.A71, 052105 (2005).
- Nicolaas P. Landsman
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Department of Physics, The City College of New York, 138th St. & Convent Ave., New York, NY, 10031, USA
Daniel Greenberger
Section for the History of Science & Technology, University of Stuttgart, Keplerstr. 17, Stuttgart, D-70174, Germany
Klaus Hentschel
Department of Social Sciences and Humanities, University of Bradford, Bradford, BD7 1DP, UK
Friedel Weinert
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Landsman, N.P. (2009). Born Rule and its Interpretation. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_20
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-70622-9
Online ISBN:978-3-540-70626-7
eBook Packages:Physics and AstronomyPhysics and Astronomy (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Copenhagen Interpretation
- Born Rule
- Modal Interpretation
- Consistent History
- Heisenberg Uncertainty Relation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


