Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance

  • Chapter

Part of the book series:Metal Ions in Life Sciences ((MILS,volume 16))

Abstract

This chapter provides structural data, mainly metal binding sites/modes, observed in crystal structures of alkali metal ion complexes containing low-molecular-weight ligands of biological relevance, mostly obtained from the Cambridge Structural Database (the CSD version 5.35 updated to February 2014). These ligands include (i) amino acids and small peptides, (ii) nucleic acid constituents (excluding quadruplexes and other oligonucleotides), (iii) simple carbohydrates, and (iv) naturally occurring antibiotic ionophores. For some representative complexes of these ligands, some details on the environment of the metal coordination and structural characteristics are described.

Please cite as:Met. Ions Life Sci. 16 (2016) 27–101

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Abbreviations

aa:

amino acid

Ade:

adenine

Ado–2H:

adenosinate dianion

ADP:

adenosine diphosphate

ADPH2:

diprotonated adenosine diphosphate

Ala–H:

alaninate monoanion

AMP:

adenosine monophosphate

AMPH:

monoprotonated adenosine monophosphate

AppppA (Ap4A):

P1,P4-bis(5’-adenosyl)tetraphosphate

ApU:

adenylyl-3’,5’-uridine

ApT:

adenylyl-3’,5’-thymidine

ATP:

adenosine 5’-triphosphate

ATPH2:

diprotonated adenosine 5’-triphosphate

C+:

cytosinium monocation

CCDC:

Cambridge Crystallographic Data Centre

CDP:

cytidine diphosphate

CDPcholine:

cytidine diphosphocholine

CDPethanolamine:

cytidine diphosphoethanolamine

Cha:

cyclohexylalanyl

CMP:

cytidine monophosphate

CMPH:

monoprotonated cytidine monophosphate

CpG:

cytidylyl-3’,5’-guanosine

CSD:

Cambridge Structural Database

Cyt:

cytosine

d:

deoxyribose

d:

dexter (optical isomer named after Latin)

dCMP:

deoxycytidine monophosphate

d(CpG):

deoxycytidylyl-3’,5’-deoxyguanosine

dien:

diethylenetriamine

dGMP:

deoxyguanosine monophosphate

DMSO:

dimethylformamide

en:

ethylenediamine

9-Et-azacrown-Ade:

16-(2-(9H-adenin-9-yl)ethyl)-16-aza-1,4,7,10,13-pentaoxa-cyclooctadecane

1-EtThy:

N1-ethylthymine

Fru:

fructose

gA, gB, gC, gD:

gramicidin A, B, C, D

Gal:

galactose

Glc:

glucose

GlyGly:

glycylglycine

Gly–H:

glycinate monoanion

GlyTyr:

glycyltyrosine

GMP:

guanosine monophosphate

GMPH:

monoprotonated guanosine monophosphate

GpC:

guanylyl-3’,5’-cytidine

Gua:

guanine

HyIv:

hydroxyisovalerate

Hyp:

hypoxanthine

IMP:

inosine monophosphate

IMPH:

monoprotonated inosine monophosphate

Ino–H:

inosinate monoanion

iPr:

isopropyl

isoGuo:

isoguanosine

l :

leavus (optical isomer named after Latin)

L:

ligand

Lac:

lactic acid

M:

metal ion

1-Me-Cyt:

N1-methylcytosine

1-MeCyt–H:

N1-methylcytosinate monoanion

Me4dae:

N,N,N’,N’-tetramethyl-1,2-diaminoethane

9-MeGua:

N9-methylguanine

1-MeThy:

N1-methylthymine

1-MeThy–H:

N1-methylthyminate monoanion

1-MeUra–H:

N1-methyluracilate monoanion

MeVal:

methylvalyl

NAD:

5’-nicotinamide-ribosyl-5’-adenyl-pyrophosphate

O(P):

oxygen atom of the phosphate group

1-Pr-azacrown–Thy:

(3-(1-thyminyl)propyl)-4,13-diaza-18-crown-6

Pro–H:

prolinate monoanion

pTpT:

5’-phosphoryl-thymidylyl-3’,5’-thymidine

THF:

tetrahydrofuran

Thr–H:

threonate monoanion

Thy:

thymine

Thy–H:

thyminate monoanion

TMP:

thymidine monophosphate

UDP:

uridine 5’-diphosphate

UDPglucose:

uridine diphosphate glucose

UDPH:

monoprotonated uridine diphosphate

UMP:

uridine monophosphate

UMPH:

monoprotonated uridine monophosphate

Ura:

uracil

Urd–3H:

uridinate trianion

References

  1. G. Wu, J. Zhu,Prog. Nucl. Magn. Reson. Spect.2012,61, 1–70, and major review articles and books cited therein.

    Google Scholar 

  2. W. Saenger,Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984, pp. 202–203.

    Google Scholar 

  3. S. Yano, M. Otsuka,Met. Ions Biol. Syst.1996,32, 27–60.

    CAS  Google Scholar 

  4. K. Aoki, K. Murayama,Met. Ions Life Sci.2012,10, 43–102, and major review articles and books cited therein.

    Google Scholar 

  5. M. Dobler,Ionophores and Their Structures, New York, London, John Wiley, 1981, pp 379.

    Google Scholar 

  6. R. Hilgenfeld, W. Saenger,Topics Curr. Chem.1982,101, 1–82.

    Google Scholar 

  7. E. N. Duesler, I. C. Paul, inPolyether Antibiotics, Ed J. W. Westley, Marcel Dekker, New York, 1983, Vol. 2, pp. 87–195.

    Google Scholar 

  8. J. Rutkowski, B. Brzezinski,BioMed Res. International,2013,2013, Article ID 162513.

    Google Scholar 

  9. J. A. Subirana, M. Soler-López,Ann. Rev. Biophys. Biomol. Struct.2003,32, 27–45.

    Article CAS  Google Scholar 

  10. L. Randaccio, M. Furlan, S. Geremia, M. Slouf, I. Srnova, D. Toffoli,Inorg. Chem.2000,39, 34033413.

    Article CAS PubMed  Google Scholar 

  11. K. R. Rao, C. Aneesh, H. L. Bhat, S. Elizabeth, M. S. Pavan, T. N. G. Row,Cryst. Growth Des.2013,13, 97–105.

    Article CAS  Google Scholar 

  12. Y.-M. Jiang, J.-H. Cai, Z.-M. Liu, X.-H. Liu,Acta Cryst.2005,E61, m878–m880.

    Google Scholar 

  13. L. Pauling,The Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca, New York (1960).

    Google Scholar 

  14. G. Müller, G.-M. Maier, M. Lutz,Inorg. Chim. Acta,1994,218, 121–131.

    Google Scholar 

  15. T. Balakrishnan, K. Ramamurthi, J. Jeyakanthan, S. Thamotharan,Acta Cryst.2013,E69, m60–m61.

    Google Scholar 

  16. M. R. Hudson, D. G. Allis, W. Ouellette, P. M. Hakey, B. S. Hudson,J. Mol. Struct.2009,934, 138–144.

    Article CAS  Google Scholar 

  17. J. Baran, M. Drozd, A. Pietraszko, M. Trzebiatowska, H. Ratajczak,Pol. J. Chem.2003,77, 1561–1577.

    CAS  Google Scholar 

  18. J. Baran, M. Drozd, H. Ratajczak, A. Pietraszko,J. Mol. Struct.2009,927, 43–53.

    Article CAS  Google Scholar 

  19. M. Fleck, K. Schwendtner, A. Hensler,Acta Cryst.2006,C62, m122–m125.

    CAS  Google Scholar 

  20. D. Dutta, A. D. Jana, M. Debnath, A. Bhaumik, J. Marek, M. Ali,Dalton Trans. (Discussion of Faraday Soc.)2010,39, 11551–11559.

    Google Scholar 

  21. K. Jayalakshmi, M. A. Sridhar, J. S. Prasad, M. N. Bhat, S. M. Dharamprakash,Mol. Cryst. Liq. Cryst. Sci. Technol.2003,A393, 95–103.

    Article  Google Scholar 

  22. Y. I. Smolin, A. E. Lapshin, G. A. Pankova,J. Struct. Chem.2007,48, 708–710.

    Article CAS  Google Scholar 

  23. Y. Wang, D. Xiao, Y. Qi, E. Wang, J. Liu,J. Cluster Sci.2008,19, 367–378.

    Article CAS  Google Scholar 

  24. G. Aromí, J. J. Novoa, J. Ribas-Ariňo, S. Igarashi, Y. Yukawa,Inorg. Chim. Acta2008,361, 3919–3925.

    Google Scholar 

  25. M. Fleck, L. Bohatý,Acta Cryst.2006,C62, m22–m26.

    CAS  Google Scholar 

  26. E. Kita, H. Marai, T. Muzioł, K. Lenart,Transition Met. Chem.2011,36, 35–44.

    Article CAS  Google Scholar 

  27. X.-Y. Jiang, X.-Y. Wu, R.-M. Yu, D.-Q. Yuan, W.-Z. Chen,Inorg. Chem. Commun.2011,14, 1546–1549.

    Article CAS  Google Scholar 

  28. C. Gabriel, M. Kaliva, J. Venetis, P. Baran, I. Rodriguez-Escudero, G. Voyiatzis, M. Zervou, A. Salifoglou,Inorg. Chem.2009,48, 476–487.

    Article CAS PubMed  Google Scholar 

  29. J. Liu, J. Zhang, D. Xiao, E. Wang,J. Cluster Sci.2007,18, 909–920.

    Article CAS  Google Scholar 

  30. X.-Y. Wu, C.-Z. Lu, Q.-Z. Zhang, S.-M. Chen, X.-J. Xu,J. Coord. Chem.2006,59, 2047–2054.

    Article CAS  Google Scholar 

  31. S.-M. Hu, S.-C. Xiang, J.-J. Zhang, T.-L. Sheng, R.-B. Fu, X.-T. Wu,Eur. J. Inorg. Chem.2008, 1141–1146.

    Google Scholar 

  32. K. van Hecke, E. Cartuyvels, T. N. Parac-Vogt, C. Görller-Walrand, L.van Meervelt,Acta Cryst.2007,E63, m2354.

    Google Scholar 

  33. H. An, T. Xu, E. Wang, C. Meng,Inorg. Chem. Commun.2007,10, 1453–1456.

    Article CAS  Google Scholar 

  34. A. Khatib, F. Aqra, D. Deamer, A. Oliver,J. Chem. Res.2009, 98–100.

    Google Scholar 

  35. T. T. Ong, P. Kavuru, T. Nguyen, R. Cantwell, Ł. Wojtas, M. J. Zaworotko,J. Am. Chem. Soc.2011,133, 9224–9227.

    Article CAS PubMed  Google Scholar 

  36. T. U. Devi, N. Lawrence, R. R. Babu, S. Selvanayagam, H. Stoeckli-Evans, K. Ramamurthi,Crys. Growth Des.2009,9, 1370–1374.

    Article CAS  Google Scholar 

  37. L.-Y. Wang, S. Igarashi, Y. Yukawa, Y. Hoshino, O. Roubeau, G. Aromi, R. E. P. Winpenny,Dalton Trans. (Discussion of Faraday Soc.)2003, 2318–2324.

    Google Scholar 

  38. R. I. Yousef, M. Bette, G. N. Kaluderović, R. Paschke, C. Yiran, D. Steinborn, H. Schmidt,Polyhedron2011,30, 1990–1996.

    Article CAS  Google Scholar 

  39. P. J. Nichols, C. L. Raston,Dalton Trans. (Discussion of Faraday Soc.)2003, 2923–2927.

    Google Scholar 

  40. S.-C. Xiang, S.-M. Hu, J.-J. Zhang, X.-T. Wu, J.-Q. Li,Eur. J. Inorg. Chem.2005, 2706–2713.

    Google Scholar 

  41. T. Konno, T. Kawamoto, R. Kuwabara, T. Yoshimura, M. Hirotsu,Chem. Lett.2002, 304–305.

    Google Scholar 

  42. J. R. Knox, C. K. Prout,Acta Cryst.1969,B25, 1857–1866.

    Article  Google Scholar 

  43. R. Yoshida, S. Ogasahara, H. Akashi, T. Shibahara,Inorg. Chim. Acta2012,383, 157–163.

    Google Scholar 

  44. H. An, Z. Han, T. Xu, C. Meng, E. Wang,Inorg. Chem. Commun.2008,11, 914–917.

    Article CAS  Google Scholar 

  45. H. Schmidbaur, I. Bach, D. L. Wilkinson, G. Müller,Chem. Ber.1989,122, 1427–1431.

    Article CAS  Google Scholar 

  46. W. S. Sheldrick, E. Hauck, S. Korn,J. Organomet. Chem.1994,467, 283–292.

    Article CAS  Google Scholar 

  47. R. Bergs, K. Sünkel, W. Beck,Chem. Ber.1993,126, 2429–2432.

    Article CAS  Google Scholar 

  48. O. Versiane, J. Felcman, J. L. de Miranda, R. A. Howie, J. M. S. Skakle, J. L. Wardell,Acta Cryst.2006,E62, m52–m55.

    Google Scholar 

  49. F. Wiesbrock, H. Schmidbaur, CrystEngComm2003,5, 262–264.

    Google Scholar 

  50. C. Sano, N. Nagashima, T. Kawakita, Y. Iitaka,Anal. Sci.1989,5, 121–122.

    Article CAS  Google Scholar 

  51. H. Schmidbaur, P. Mikulcik, G. Muller,Chem. Ber.1990,123, 1001–1004.

    Article CAS  Google Scholar 

  52. L. M. Thomas, N. Ramasubbu, K. K. Bhandary,Biopolymers1994,34, 1007–1013.

    Article CAS PubMed  Google Scholar 

  53. B. D. White, J. Mallen, K. A. Arnold, F. R. Fronczek, R. D. Gandour, L. M. B. Gehrig, G. W. Gokel,J. Org. Chem.1989,54, 937–947.

    Article CAS  Google Scholar 

  54. W. Liu, Y. Song, Y. Li, Y. Zou, D. Dang, C. Ni, Q. Meng,Chem. Commun.2004, 2348–2349.

    Google Scholar 

  55. M. Doi, A. Asano, T. Ishida, Y. Katsuya, Y. Mezaki, M Sasaki, A. Terashima, T. Taniguchi, H. Hasegawa, M. Shiono,Acta Cryst.2001,D57, 628–634.

    Google Scholar 

  56. Y.-Y. H. Chiu, L. D. Brown, W. N. Lipscomb,J. Am. Chem. Soc.1977,99, 4799–4803.

    Article CAS PubMed  Google Scholar 

  57. L. C. M. Ngoka, M. L. Gross,Biochem. Biophys. Res. Commun.1999,257, 713–719.

    Article  Google Scholar 

  58. A. E. Gibson, C. Price, W. Clegg, A. Houlton,J. Chem. Soc., Dalton Trans.2002, 131–133.

    Google Scholar 

  59. E. Freisinger, A. Schneider, M. Drumm, A. Hegmans, S. Meier, B. Lippert,J. Chem. Soc., Dalton Trans.2000, 3281–3287.

    Google Scholar 

  60. B. Müller, W.-Z. Shen, P. J. S. Miguel, F. M. Albertí, T. van der Wijst, M. Noguera, L. Rodríguez-Santiago, M. Sodupe, B. Lippert,Chem. Eur. J.2011,17, 9970–9983.

    Article PubMed CAS  Google Scholar 

  61. A. Hegmans, E. Zangrando, E. Freisinger, F. Pichierri, L. Randaccio, C. Mealli, M. Gerdan, A. X. Trautwein, B. Lippert,Chem. Eur. J.1999,5, 3010–3018.

    Article CAS  Google Scholar 

  62. D. Armentano, G. D. Munno, R. Rossi,New J. Chem. (Nouv. J. Chim.),2006,30, 13–17.

    Google Scholar 

  63. B. Fischer, H. Preut, B. Lippert, H. Schöllhorn, U. Thewalt,Polyhedron1990,9, 2199–2204.

    Article CAS  Google Scholar 

  64. S. L. D. Wall, L. J. Barbour, O. F. Schall, G. W. Gokel,J. Chem. Cryst.2000,30, 227–231.

    Article  Google Scholar 

  65. F. Guay, A. Beauchamp,Inorg. Chim. Acta1982,66, 57–63.

    Google Scholar 

  66. W. Micklitz, B. Lippert, F. Lianza, A. Albinati,Inorg. Chim. Acta1994,227, 5–12.

    Google Scholar 

  67. E. Freisinger, A. Schimanski, B. Lippert,J. Biol. Inorg. Chem.2001,6, 378–389.

    Article CAS PubMed  Google Scholar 

  68. C. J. L. Lock, P. Pilon, B. Lippert,Acta Cryst.1979,B35, 2533–2537.

    Article  Google Scholar 

  69. B. L. Kindberg, E. H. Griffith, E. L. Amma,J. Chem. Soc., Chem. Commun.1975, 195–196.

    Google Scholar 

  70. F. Zamora, H. Witkowski, E. Freisinger, J. Müller, B. Thormann, A. Albinati, B. Lippert,J. Chem. Soc., Dalton Trans.1999, 175–182.

    Google Scholar 

  71. M. Mizutani, K. Jitsukawa, H. Masuda, H. Einaga,Chem. Commun.1996, 1389–1390.

    Google Scholar 

  72. M. Mizutani, S. Miwa, N. Fukushima, Y. Funahashi, T. Ozawa, K. Jitsukawa, H. Masuda,Inorg. Chim. Acta2002,339, 543–550.

    Google Scholar 

  73. O. Renn, B. Lippert, I. Mutikainen,Inorg. Chim. Acta1994,218, 117–120.

    Google Scholar 

  74. L. Holland, W.-Z. Shen, W. Micklitz, B. Lippert,Inorg. Chem.2007,46, 11356–11365.

    Article CAS PubMed  Google Scholar 

  75. B. Lippert,Coord. Chem. Rev.2000,200–202, 487–516.

    Article  Google Scholar 

  76. N. Shan, S. J. Vickers, H. Adams, M. D. Ward, J. A. Thomas,Angew. Chem. Int. Ed.2004,43, 3938–3941.

    Article CAS  Google Scholar 

  77. W. Saenger,Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984, pp. 17–24.

    Google Scholar 

  78. P. Klüfers, P. Mayer,Z. Anorg. Allg. Chem.2007,633, 903–907.

    Article CAS  Google Scholar 

  79. M. Cai, A. L. Marlow, J. C. Fettinger, D. Fabris, T. J. Haverlock, B. A. Moyer, J. T. Davis,Angew. Chem., Int. Ed. Engl.2000,39, 1283–1285.

    Google Scholar 

  80. P. Klüfers, P. Mayer,Acta Cryst.1996,C52, 2970–2972.

    Google Scholar 

  81. J. Galy, A. Mosset, I. Grenthe, I. Puigdoménech, B. Sjöberg, F. Hultén,J. Am. Chem. Soc.1987,109, 380–386.

    Article CAS  Google Scholar 

  82. T. Golas, M. Fikus, Z. Kazimierczuk, D. Shugar,Eur. J. Biochem.1976,65, 183–192.

    Article CAS PubMed  Google Scholar 

  83. J. T. Davis, S. K. Tirumala, A. L. Marlow,J. Am. Chem. Soc.1997,119, 5271–5272.

    Article CAS  Google Scholar 

  84. G. S. Padiyar, T. P. Seshadri,J. Biomol. Struct. Dyn.1998,15, 803–821.

    Article CAS PubMed  Google Scholar 

  85. (a) W. Saenger, B. S. Reddy, K. Mühlegger, G. Weimann,Nature (London)1977,267, 225–229. (b) B. S. Reddy, W. Saenger, K. Mühlegger, G. Weimann,J. Am. Chem. Soc.1981,103, 907–914.

    Google Scholar 

  86. M. Inoue, T. Yamase,Bull. Chem. Soc. Jpn.1996,69, 2863–2868.

    Article CAS  Google Scholar 

  87. Z. Szabó, I. Furó, I. Csöregh,J. Am. Chem. Soc.2005,127, 15236–15247.

    Article PubMed CAS  Google Scholar 

  88. K. I. Varughese, C. T. Lu, G. Kartha,J. Am. Chem. Soc.1982,104, 3398–3401.

    Article CAS  Google Scholar 

  89. O. Kennard, N. W. Isaacs, W. D. S. Motherwell, J. C. Coppola, D. L. Wampler, A. C. Larson, D. G. Watson,Proc. R. Soc. London, Ser. A1971,325, 401–436.

    Google Scholar 

  90. Y. Sugawara, N. Kamiya, H. Iwasaki, T. Ito, Y. Satow,J. Am. Chem. Soc.1991,113, 5440–5445.

    Article CAS  Google Scholar 

  91. D. A. Adamiak, W. Saenger,Acta Cryst.1980,B36, 2585–2589.

    Article CAS  Google Scholar 

  92. P. Swaminathan, M. Sundaralingam,Acta Cryst.1980,B36, 2590–2597.

    Article CAS  Google Scholar 

  93. M. A. Viswamitra, M. V. Hosur, Z. Shakked, O. Kennard,Nature (London)1976,262, 234–236.

    Article CAS  Google Scholar 

  94. (a) S. K. Katti, T. P. Seshadri, M. A. Viswamitra,Curr. Sci.1980,49, 533–535. (b) S. K. Katti, T. P. Seshadri, M. A. Viswamitra,Acta Cryst.1981,B37, 1825–1832.

    Google Scholar 

  95. C. L. Barnes, S. W. Hawkinson,Acta Cryst.1982,B38, 812–817.

    Article CAS  Google Scholar 

  96. P. Zhou, H. Li,Dalton Trans. (Discussion of Faraday Soc.)2011,40, 4834–4837.

    Google Scholar 

  97. M. Benedetti, G. Tamasi, R. Cini, L. G. Marzilli, G. Natile,Chem. Eur. J.2007,13, 3131–3142.

    Article CAS PubMed  Google Scholar 

  98. D. W. Young, P. Tollin, H. R. Wilson,Acta Cryst.1974,B30, 2012–2018.

    Article CAS  Google Scholar 

  99. T. P. Seshadri, M. A. Viswamitra,Pramana1974,3, 218–235.

    Article CAS  Google Scholar 

  100. S. T. Rao, M. Sundaralingam,J. Am. Chem. Soc.1969,91, 1210–1217.

    Article CAS PubMed  Google Scholar 

  101. M. Sriram, Y.-C. Liaw, Y.-G. Gao, A. H.-J. Wang,Acta Cryst.1991,C47, 507–510.

    CAS  Google Scholar 

  102. M. D. Poojary, H. Manohar,Inorg. Chem.1985,24, 1065–1069.

    Article CAS  Google Scholar 

  103. R. Bau, R. W. Gellert, S. M. Lehovec, S. Louie,J. Clin. Hematol. Oncol.1977,7, 51–61.

    CAS  Google Scholar 

  104. T. J. Kistenmacher, C. C. Chiang, P. Chalilpoyil, L. G. Marzilli,J. Am. Chem. Soc.1979,101, 1143–1148.

    Article CAS  Google Scholar 

  105. C. C. Chiang, T. Sorrell, T. J. Kistenmacher, L. G. Marzilli,J. Am. Chem. Soc.1978,100, 5102–5110.

    Article CAS  Google Scholar 

  106. G. Borodi, A. Hernanz, I. Bratu, M. Pop, R. Navarro,Acta Cryst.2001,E57, m514–m516.

    Google Scholar 

  107. Y. Sugawara, A. Nakamura, Y. Iimura, K. Kobayashi, H. Urabe,J. Phys. Chem. B2002,106, 10363–10368.

    Article CAS  Google Scholar 

  108. S. V. Gonzalez, K. Larsen, W. H. Nelson, E. Sagstuen, C. H. Görbitz,Acta Cryst.2005,E61, m554–m556.

    Google Scholar 

  109. S. S. Mande, T. P. Seshadri, M. A. Viswamitra,Acta Cryst.1994,C50, 876–879.

    CAS  Google Scholar 

  110. C. L. Coulter,J. Am. Chem. Soc.1973,95, 570–575.

    Article CAS PubMed  Google Scholar 

  111. M. A. Viswamitra, T. P. Seshadri, M. L. Post, O. Kennard,Nature1975,258, 497–501.

    Article CAS PubMed  Google Scholar 

  112. S. K. Katti, M. A. Viswamitra,Acta Cryst.1981,B37, 1058–1063.

    Article CAS  Google Scholar 

  113. T. P. Seshadri, M. A. Viswamitra, G. Kartha,Acta Cryst.1980,B36, 925–927.

    Article CAS  Google Scholar 

  114. R. Chitra, R. Ranjan-Choudhury, M. Ramanadham,Appl. Phys. A2002,74, S1576–S1578.

    Google Scholar 

  115. J. D. Hoogendorp, C. Romers,Acta Cryst.1978,B34, 2724–2728.

    Article CAS  Google Scholar 

  116. M. A. Viswamitra, B. S. Reddy, M. N. G. James, G. J. B. Williams,Acta Cryst.1972,B28, 1108–1116.

    Article  Google Scholar 

  117. M. A. Viswamitra, T. P. Seshadri, M. L. Post,Acta Cryst.1980,B36, 2019–2024.

    Article CAS  Google Scholar 

  118. Y. Sugawara, H. Iwasaki,Acta Cryst.1984,C40, 389–393.

    CAS  Google Scholar 

  119. J. Emerson, M. Sundaralingam,Acta Cryst.1980,B36, 537–543.

    Article CAS  Google Scholar 

  120. M. A. Viswamitra, M. L. Post, O. Kennard,Acta Cryst.1979,B35, 1089–1094.

    Article CAS  Google Scholar 

  121. N. H. Campbell, S. Neidle,Met. Ions Life Sci.2012,10, 119–134.

    Article CAS PubMed  Google Scholar 

  122. K. Aoki, inComprehensive Supramolecular Chemistry, Ed J.-M. Lehn, Vol. 5, Pergamon Press, Oxford, 1996, pp. 249–294.

    Google Scholar 

  123. K. Aoki,Met. Ions Biol. Syst.1996,32, 91–134.

    Google Scholar 

  124. K. Aoki, inLandolt-Börnstein: Nukleinsäuren: Teilband b; Kristallographische und Structurelle Daten II, Ed W. Saenger, Springer-Verlag, Berlin, 1989, pp. 171–246.

    Google Scholar 

  125. J. Pandit, T. P. Seshadri, M. A. Viswamitra,Acta Cryst.1983,C39, 342–345.

    CAS  Google Scholar 

  126. A. C. Larson,Acta Cryst.1978,B34, 3601–3604.

    Article CAS  Google Scholar 

  127. N. C. Seeman, J. M. Rosenberg, F. L. Suddath, J. J. P. Kim, A. Rich,J. Mol. Biol.1976,104, 109–144.

    Article CAS PubMed  Google Scholar 

  128. J. M. Rosenberg, N. C. Seeman, R. O. Day, A. Rich,J. Mol. Biol.1976,104, 145–167.

    Article CAS PubMed  Google Scholar 

  129. A. H.-J. Wang, G. J. Quigley, A. Rich,Nucleic Acids Res.1979,6, 3879–3890.

    Article PubMed Central CAS PubMed  Google Scholar 

  130. M. Coll, X. Solans, M. Font-Altaba, J. A. Subirana,J. Biomol. Struct. Dyn.1987,4, 797–811.

    Article CAS PubMed  Google Scholar 

  131. N. Camerman, J. K. Fawcett, A. Camerman,J. Mol. Biol.1976,107, 601–621.

    Article CAS PubMed  Google Scholar 

  132. D. Watanabe, M. Ishikawa, M. Yamasaki, M. Ozaki, T. Katayama, H. Nakajima,Acta Cryst.1996,C52, 338–340.

    CAS  Google Scholar 

  133. (a) X. Shui, L. McFail-Isom, G. G. Hu, L. D. Williams,Biochemistry1998,37, 8341–8355. (b) L. MacFail-Isom, X. Shui, L. D. Williams,Biochemistry1998,37, 17105–17111.

    Google Scholar 

  134. C. C. Sines, L. McFail-Isom, S. B. Howerton, D. van Derveer, L. D. Williams,J. Am. Chem. Soc.2000,122, 11048–11056.

    Article CAS  Google Scholar 

  135. V. Tereshko, G. Minasov, M. Egli,J. Am. Chem. Soc.1999,121, 3590–3595.

    Article CAS  Google Scholar 

  136. K. K. Woods, L. McFail-Isom, C. C. Sines, S. B. Howerton, R. K. Stephens, L. D. Williams,J. Am. Chem. Soc.2000,122, 1546–1547.

    Article CAS  Google Scholar 

  137. J. Lüthje,Klin. Wochenschr.1989,67, 317–327.

    Article PubMed  Google Scholar 

  138. K. C. Wong, A. Hamid, S. Baharuddin, C. K. Quah, H.-K. Fun,Acta Cryst.2009,E65, m1308–m1309.

    Google Scholar 

  139. G. Ferguson, B. Kaitner, B. E. Connett, D. F. Rendle,Acta Cryst.1991,B47, 479–484.

    Article CAS  Google Scholar 

  140. Y. Cho, R. B. Honzatko,Acta Cryst.1990,C46, 587–590.

    CAS  Google Scholar 

  141. N. Narendra, T. P. Seshadri, M. A. Viswamitra,Acta Cryst.1984,C40, 1338–1340.

    CAS  Google Scholar 

  142. A. E. Kozioł,Pol. J. Chem.1991,65, 455–463.

    Google Scholar 

  143. T. Lis,Carbohydr. Res.1992,229, 33–39.

    Article CAS  Google Scholar 

  144. C. A. Beevers, G. H. Maconochie,Acta Cryst.1965,18, 232–236.

    Article CAS  Google Scholar 

  145. N. Narendra, M. A. Viswamitra,Curr. Sci.1984,53, 1018–1020.

    CAS  Google Scholar 

  146. T. Lis,Carbohydr. Res.1985,135, 187–194.

    Article CAS  Google Scholar 

  147. N. Narendra, M. A.Viswamitra,Acta Cryst.1985,C41, 1621–1624.

    Google Scholar 

  148. D. Lamba, W. Mackie, B. Sheldrick, P. Belton, S. Tanner,Carbohydr. Res.1988,180, 183–193.

    Article CAS  Google Scholar 

  149. R. Krishnan, T. P. Seshadri,Acta Cryst.1990,C46, 2299–2302.

    CAS  Google Scholar 

  150. T. Lis,Acta Cryst.1986,C42, 1745–1747.

    CAS  Google Scholar 

  151. N. Narendra, T. P. Seshadri, M. A. Viswamitra,Acta Cryst.1985,C41, 31–34.

    CAS  Google Scholar 

  152. C. A. Beevers, W. Cochran,Proc. R. Soc. London, Ser. A1947,190, 257–272.

    Google Scholar 

  153. C. A. Accorsi, F. Bellucci, V. Bertolasi, V. Ferretti, G. Gilli,Carbohydr. Res.1989,191, 105–116.

    Article CAS  Google Scholar 

  154. C. A. Accorsi, V. Bertolasi, V. Ferretti, G. Gilli,Carbohydr. Res.1989,191, 91–104.

    Article CAS  Google Scholar 

  155. T. Kato, T. Fujimoto, A. Tsutsui, M. Tashiro, Y. Mitsutsuka, T. Machinami,Chem. Lett.2010,39, 136–137.

    Article CAS  Google Scholar 

  156. T. Fujimoto, T. Kato, Y. Usui, O. Kamo, K. Furihata, K. Tsubono, T. Kato, T. Machinami, M. Tashiro,Carbohydr. Res.2011,346, 1991–1996.

    Article CAS PubMed  Google Scholar 

  157. J. K. Wright, R. Seckier, P. Overath,Annu. Rev. Biochem.1986,55, 225–248.

    Article CAS PubMed  Google Scholar 

  158. M. Tako, S. Nakamura, Y. Kohda,Carbohydr. Res.1987,161, 247–255.

    Article CAS  Google Scholar 

  159. J. F. D. S. Daniel, E. R. Filho,Natural Product Reports2007,24, 1128–1141.

    Article CAS PubMed  Google Scholar 

  160. D. A. Kelkar, A. Chattopadhyay,Biochim. Biophys. Acta2007,1768, 1103–1113.

    Article CAS PubMed  Google Scholar 

  161. A. Olczak, M. L. Glówka, M. Szczesio, J. Bojarska, Z. Wawrzak, W. L. Duax,Acta Cryst.2010,D66, 874–880.

    Google Scholar 

  162. D. A. Doyle, B. A. Wallace,J. Mol. Biol.1997,266, 963–977.

    Article CAS PubMed  Google Scholar 

  163. A. Olczak, M. L. Glówka, M. Szczesio, J. Bojarska, W. L. Duax, B. M. Burkhart, Z. Wawrzak,Acta Cryst.2007,D63, 319–327.

    Google Scholar 

  164. M. K. Glowka, A. Olczak, J. Bojarska, M. Szczesio, W. L. Duax, B. M. Burkhart, W. A. Pangdorn, D. A. Langs, Z. Wawrzak,Acta Cryst.2005,D61, 433–441.

    CAS  Google Scholar 

  165. B. M. Burkhart, N. Li, D. A. Langs, W. A. Pangborn, W. L. Duax,Proc. Natl. Acad. Sci. USA1998,95, 12950–12955

    Google Scholar 

  166. B. A. Wallace, K. Ravikumar,Science1988,241, 182–187.

    Article CAS PubMed  Google Scholar 

  167. R. E. Koeppe, K. O. Hodgson, L. Stryer,J. Mol. Biol.1978,121, 41–54.

    Article CAS PubMed  Google Scholar 

  168. W. L. Duax, V. Pletnev, B. M. Burkhart,J. Mol. Struct.2003,647, 97–111.

    Article CAS  Google Scholar 

  169. I. L. Karle,J. Am. Chem. Soc.1974,96, 4000–4006.

    Article CAS PubMed  Google Scholar 

  170. I. L. Karle,Proc. Nat. Acad. Sci. USA1985,82, 7155–7159.

    Google Scholar 

  171. I. L. Karle,Biochem.1974,13, 2155–2162.

    Article CAS  Google Scholar 

  172. N. E. Zhukhlistova, G. N. Tishchenko,Sov. Phys. Cryst.1981,26, 700–704.

    Google Scholar 

  173. N. E. Zhukhlistova,Cryst. Reports2002,47, 433–442.

    Google Scholar 

  174. N. E. Zhukhlistova, G. N. Tishchenko, L. Refaat, M. M. Woolfson,Cryst. Reports1998,43, 45–52.

    Google Scholar 

  175. M. Dobler, J. D. Dunitz, J. Krajewski,J. Mol. Biol.1969,42, 603–606.

    Article CAS PubMed  Google Scholar 

  176. G. N. Tishchenko, Z. Karimov,Sov. Phys. Cryst.1978,23, 409–416.

    Google Scholar 

  177. N. E. Zhukhlistova, G. N. Tishchenko, K. M. Polyakov,Sov. Phys. Cryst.1982,27, 176–181.

    Google Scholar 

  178. J. A. Hamilton, M. N. Sabesan, L. K. Steinrauf,Acta Cryst.1980,B36, 1052–1057.

    Article CAS  Google Scholar 

  179. L. K. Steinrauf, J. A. Hamilton, M. N. Sabesan,J. Am. Chem. Soc.1982,104, 4085–4091.

    Article CAS  Google Scholar 

  180. J. A. Hamilton, M. N. Sabesan, L. K. Steinrauf,J. Am. Chem. Soc.1981,103, 5880–5885.

    Article CAS  Google Scholar 

  181. M. Pinkerton, L. K. Steinrauf, P. Dawkins,Biochem. Biophys. Res. Comm.1969,35, 512–518.

    Article CAS PubMed  Google Scholar 

  182. K. Neupert-Laves, M. Dobler,Helv. Chim. Acta1975,58, 432–442.

    Google Scholar 

  183. V. Z. Pletnev, I. N. Tsygannik, Yu. D. Fonarev, I. Yu. Mikhaylova, Yu. V. Kulikov, V. T. Ivanov, D. A. Lengs, V. L. Dyueks,Bioorg. Khim.1995,21, 828–833.

    Google Scholar 

  184. Y. Nishibata, A. Itai, Y. Iitaka, Y. Nawata,Acta Cryst.1981,A37, C75.

    Article  Google Scholar 

  185. L. K. Steinrauf, K. Folting,Isr. J. Chem.1984,24, 290–296.

    Article CAS  Google Scholar 

  186. M. Dobler, R. P. Phizackerley,Helv. Chim. Acta1974,57, 664–674.

    Google Scholar 

  187. (a) B. T. Kilbourn, J. D. Dunitz, L. A. R. Pioda, W. Simon,J. Mol. Biol.1967,30, 559–563. (b) M. Dobler, J. D. Dunitz, B. T. Kilbourn,Helv. Chim. Acta1969,52, 2573–2583.

    Google Scholar 

  188. T. Sakamaki, Y. Iitaka, Y. Nawata,Acta Cryst.1977,B33, 52–59.

    Google Scholar 

  189. T. Sakamaki, Y. Iitaka, Y. Nawata,Acta Cryst.1976,B32, 768–774.

    Article CAS  Google Scholar 

  190. (a) J. D. Dunitz, D. M. Hawley, D. Mikloš, D. N. J. White, Y. Berlin, R. Marušić, V. Prelog,Helv. Chim. Acta1971,54, 1709–1713. (b) W. Marsh, J. D. Dunitz, D. N. J. White,Helv. Chim. Acta1974,57, 10–17.

    Google Scholar 

  191. J. W. Westley, inPolyether Antibiotics, Ed J. W. Westley, Marcel Dekker, New York, 1982, Vol.1, pp. 1–20.

    Google Scholar 

  192. C. J. Dutton, B. J. Banks, C. B. Cooper,Natural Product Reports1995,12, 165–181.

    Article CAS PubMed  Google Scholar 

  193. P. van Roey, W. L. Duax, P. D. Strong, G. D. Smith,Isr. J. Chem.1984,24, 283–289.

    Article  Google Scholar 

  194. M. Alléaume, B. Busetta, C. Farges, P. Gachon, A. Kergomard, T. Staron,J. Chem. Soc., Chem. Commun.1975, 411–412.

    Google Scholar 

  195. J. Bordner, P. C. Watts, E. B. Whipple,J. Antibiot.1987,40, 1496–1505.

    Article CAS PubMed  Google Scholar 

  196. Y. Takahashi, H. Nakamura, R. Ogata, N. Matsuda, M. Hamada, H. Naganawa, T. Takita, Y. Iitaka, K. Sato, T. Takeuchi,J. Antibiot.1990,43, 441–443.

    Google Scholar 

  197. D. M. Walba, M. Hermsmeier, R. C. Haltiwanger, J. H. Noordik,J. Org. Chem.1986,51, 245–247.

    Article CAS  Google Scholar 

  198. A. Huczyński, J. Janczak, B. Brzezinski,J. Mol. Struct.2011,985, 70–74.

    Article CAS  Google Scholar 

  199. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, B. Brzezinski,J. Mol. Struct.2007,871, 92–97.

    Article CAS  Google Scholar 

  200. Y. Barrans, M. Alléaume, G. Jéminet,Acta Cryst.1982,B38, 1144–1149.

    Article CAS  Google Scholar 

  201. D. L. Ward, K.-T. Wei, J. G. Hoogerheide, A. I. Popov,Acta Cryst.1978,B34, 110–115.

    Article CAS  Google Scholar 

  202. W. L. Duax, G. D. Smith, P. D. Strong,J. Am. Chem. Soc.1980,102, 6725–6729.

    Google Scholar 

  203. M. Pinkerton, L. K. Steinrauf,J. Mol. Biol.1970,49, 533–546.

    Article CAS PubMed  Google Scholar 

  204. F. A. A. Paz, P. J. Gates, S. Fowler, A. Gallimore, B. Harvey, N. P. Lopes, C. B. W. Stark, J. Staunton, J. Klinowski, J. B. Spencer,Acta Cryst.2003,E59, m1050–m1052.

    Google Scholar 

  205. A. Nagatsu, T. Takahashi, M. Isomura, S. Nagai, T. Ueda, N. Murakami, J. Sakakibara, K. Hatano,Chem. Pharm. Bull.1994,42, 2269–2275.

    Article CAS PubMed  Google Scholar 

  206. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, B. Brzezinski,J. Mol. Struct.2007,832, 84–89.

    Article CAS  Google Scholar 

  207. A. Huczyński, J. Janczak, B. Brzezinski, F. Bartl,J. Mol. Struct.2013,1043, 75–84.

    Article CAS  Google Scholar 

  208. A. Huczyński, M. Ratajczak-Sitarz, J. Stefańska, A. Katrusiak, B. Brzezinski, F. Bartl,J. Antibiot.2011,64, 249–256.

    Article PubMed CAS  Google Scholar 

  209. I. N. Pantcheva, P. Dorkov, V. N. Atanasov, M. Mitewa, B. L. Shivachev, R. P. Nikolova, H. Mayer-Figge, W. S. Sheldrick,J. Inorg. Biochem.2009,103, 1419–1424.

    Article CAS PubMed  Google Scholar 

  210. P. Dorkov, I. N. Pantcheva, W. S. Sheldrick, H. Mayer-Figge, R. Petrova, M. Mitewa,J. Inorg. Biochem.2008,102, 26–32.

    Article CAS PubMed  Google Scholar 

  211. A. Huczyński, J. Janczak, D. Łowicki, B. Brzezinski,Biochim. Biophys. Acta2012,1818, 2108–2119.

    Article PubMed CAS  Google Scholar 

  212. D. Łowicki, A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, J. Stefańska, B. Brzezinski, F. Bartl,J. Mol. Struct.2009,923, 53–59.

    Article CAS  Google Scholar 

  213. A. Huczyński, J. Janczak, B. Brzezinski,J. Mol. Struct.2012,1030, 131–137.

    Article CAS  Google Scholar 

  214. W. Hüttel, J. B. Spencer, P. F. Leadlay,Beilstein J. Org. Chem.2014,10, 361–368.

    Google Scholar 

  215. W. Pangborn, W. Duax, D. Langs,J. Am. Chem. Soc.1987,109, 2163–2165.

    Article CAS  Google Scholar 

  216. A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, B. Brzezinski,J. Mol. Struct.2008,888, 224–229.

    Article CAS  Google Scholar 

  217. S. Ö. Yildirim, V. McKee, F.-Z. Khardli, M. Mimouni, T. B. Hadda,Acta Cryst.2008,E64, m154–m155.

    Google Scholar 

  218. T. Fehr, M. Kuhn, H.-R. Loosli, M. Ponelle, J. J. Boelsterli, M. D. Walkinshaw,J. Antibiot.1989,42, 897–902.

    Google Scholar 

  219. Y. Barrans, M. Alléaume, L. David,Acta Cryst.1980,B36, 936–938.

    Article CAS  Google Scholar 

  220. A. J. Geddes, B. Sheldrick, W. T. J. Stevenson, L. K. Steinrauf,Biochem. Biophys. Res. Commun.1974,60, 1245–1251.

    Article CAS PubMed  Google Scholar 

  221. J. W. Westley, R. H. Evans, L. H. Sello, N. Troupe, C.-M. Liu, J. F. Blount, R. G. Pitcher, T. H. Williams, P. A. Miller,J. Antibiot.1981,34, 139–147.

    Article CAS PubMed  Google Scholar 

  222. E. F. Paulus, M. Kurz, H. Matter, L. Vértesy,J. Am. Chem. Soc.1998,120, 8209–8221.

    Article CAS  Google Scholar 

  223. E. F. Paulus, L. Vértesy,Z. Kristallogr. New Cryst. Struct.2004,219, 184–186.

    CAS  Google Scholar 

  224. E. F. Paulus, L. Vértesy,Z. Kristallogr. New Cryst. Struct.2003,218, 575–577.

    CAS  Google Scholar 

  225. N. D. Jones, M. O. Chaney, J. W. Chamberlin, R. L. Hamill, S. Chen,J. Am. Chem. Soc.1973,95, 3399–3400.

    Article CAS PubMed  Google Scholar 

  226. J. P. Dirlam, L. Presseau-Linabury, D. A. Koss,J. Antibiot.1990,43, 727–730.

    Article CAS PubMed  Google Scholar 

  227. J. P. Dirlam, A. M. Belton, J. Bordner, W. P. Cullen, L. H. Huang, Y. Kojima, H. Maeda, H. Nishida, S. Nishiyama, J. R. Oscarson, A. P. Picketts, T. Sakakibara, J. Tone, K. Tsukuda,J. Antibiot.1990,43, 668–679.

    Article CAS PubMed  Google Scholar 

  228. V. Kumpiņš, S. Belyakov, Ë. Bizdëna, M. Turks,Z. Kristallogr. New Cryst. Struct.2012,227, 145–148.

    Google Scholar 

  229. E. W. Czerwinski, L. K. Steinrauf,Biochem. Biophys. Res. Commun.1971,45, 1284–1287

    Article CAS PubMed  Google Scholar 

  230. J. R. Hauske, G. Kostek,J. Org. Chem.1989,54, 3500–3504.

    Article CAS  Google Scholar 

  231. W. P. Cullen, J. Bordner, L. H. Huang, P. M. Moshier, J. R. Oscarson, L. A. Presseau, R. S. Ware, E. B. Whipple, Y. Kojima, H. Maeda, S. Nishiyama, J. Tone, K. Tsukuda, K. S. Holdom, J. C. Ruddock,J. Ind. Microbiol.1990,5, 365–374.

    Article CAS PubMed  Google Scholar 

  232. J. R. Oscarson, J. Bordner, W. D. Celmer, W. P. Cullen, L. H. Huang, H. Maeda, P. M. Moshier, S. Nishiyama, L. Presseau, R. Shibakawa, J. Tone,J. Antibiot.1989,42, 37–48.

    Article CAS PubMed  Google Scholar 

  233. M. Shiro, H. Nakai, K. Nagashima, N. Tsuji,J. Chem. Soc., Chem. Commun.1978, 682–683.

    Google Scholar 

  234. J. P. Dirlam, A. M. Belton, J. Bordner, W. P. Cullen, L. H. Huang, Y. Kojima, H. Maeda, S. Nishiyama, J. R. Oscarson, A. P. Ricketts, T. Sakakibara, J. Tone, K. Tsukuda, M. Yamada,J. Antibiot.1992,45, 331–340.

    Article CAS PubMed  Google Scholar 

  235. P. G. Schmidt, A. H.-J. Wang, I. C. Paul,J. Am. Chem. Soc.1974,96, 6189–6191.

    Article CAS  Google Scholar 

  236. G. D. Smith, W. L. Duax, S. Fortier,J. Am. Chem. Soc.1978,100, 6725–6727.

    Article CAS  Google Scholar 

  237. C. C. Chiang, I. C. Paul,Science1977,196, 1441–1443.

    Article CAS PubMed  Google Scholar 

  238. K. D. Klika, J .P. Haansuu, V. V. Ovcharenko, K. K. Haahtela, P. M. Vuorela, R. Sillanpää, K. Pihlaja,Z. Naturforsch., Teil B2003,58, 1210–1215.

    Google Scholar 

  239. J. W. Westley, C.-M. Liu, J. F. Blount, L. H. Sello, N. Troupe, P. A. Miller,J. Antibiot.1983,36, 1275–1278.

    Article CAS PubMed  Google Scholar 

  240. D. H. Davies, E. W. Snape, P. J. Suter, T. J. King, C. P. Falshaw,J. Chem. Soc.,Chem. Commun.1981, 1073–1074.

    Google Scholar 

  241. D. Łowicki, A. Huczyński,BioMed Research International,2013,2013, Article ID 742149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan

    Katsuyuki Aoki

  2. Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, 980-8575, Japan

    Kazutaka Murayama

  3. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

    Ning-Hai Hu

Authors
  1. Katsuyuki Aoki

    You can also search for this author inPubMed Google Scholar

  2. Kazutaka Murayama

    You can also search for this author inPubMed Google Scholar

  3. Ning-Hai Hu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKatsuyuki Aoki.

Editor information

Editors and Affiliations

  1. Department of Chemistry Inorganic Chemistry, University of Basel, Basel, Basel Stadt, Switzerland

    Astrid Sigel

  2. Department of Chemistry Inorganic Chemistry, University of Basel, Basel, Switzerland

    Helmut Sigel

  3. Department of Chemistry, University of Zürich, Zürich, Switzerland

    Roland K. O. Sigel

Rights and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aoki, K., Murayama, K., Hu, NH. (2016). Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance. In: Sigel, A., Sigel, H., Sigel, R. (eds) The Alkali Metal Ions: Their Role for Life. Metal Ions in Life Sciences, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-21756-7_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp