Part of the book series:Fundamental Theories of Physics ((FTPH,volume 177))
2721Accesses
24Citations
Abstract
It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
- Hardcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.Notes
- 1.
Penrose considered a simple model in which particles on negative energy orbits fall into a spinning BH. Wagh and Dadhich [12] extended the analysis to discrete particle accretion in the presence of a magnetic field, which introduces additional interesting effects. We do not discuss these particle-based mechanisms, but focus purely on fluid dynamical processes within the magnetohydrodynamic (MHD) approximation. We also do not discuss an ongoing controversy on whether or not different mechanisms based on magnetized fluids differ from one another [6].
- 2.
In the case of a fifth transient BH, 4U1543-47, radio observations did not include the peak of the light curve, so one could only deduce a lower limit to the jet power, which is shown as an open circle in Fig. 4a.
- 3.
The two scalings agree for small values of\(a_*\), but differ as\(a_*\rightarrow 1\).
References
Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento1, 252 (1969)
Ruffini, R., Wilson, J.R.: Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D12, 2959 (1975). doi:10.1103/PhysRevD.12.2959
Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc.179, 433 (1977)
Damour, T., Ruffini, R., Hanni, R.S., Wilson, J.R.: Regions of magnetic support of a plasma around a black hole. Phys. Rev. D17, 1518 (1978). doi:10.1103/PhysRevD.17.1518
Koide, S., Shibata, K., Kudoh, T., Meier, D.L.: Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets. Science295, 1688 (2002). doi:10.1126/science.1068240
Komissarov, S.S.: Blandford-Znajek mechanism versus Penrose process. J. Korean Phys. Soc.54, 2503 (2009). doi:10.3938/jkps.54.2503
McKinney, J.C., Gammie, C.F.: A measurement of the electromagnetic luminosity of a Kerr black hole. Astrophys. J.611, 977 (2004). doi:10.1086/422244
McKinney, J.C.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc.368, 1561 (2006). doi:10.1111/j.1365-2966.2006.10256.x
Beskin, V.S.: MHD Flows in Compact Astrophysical Objects. Astronomy and astrophysics library. Springer, (2010). doi:10.1007/978-3-642-01290-7
Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418, L79 (2011). doi:10.1111/j.1745-3933.2011.01147.x
Meier, D.L.: Black Hole Astrophysics: The Engine Paradigm. Praxis Books in Astronomy and Planetary Sciences. Springer, Heidelberg; New York (2012)
Wagh, S.M., Dadhich, N.: The energetics of black holes in electromagnetic fields by the Penrose process. Phys. Rep.183, 137 (1989). doi:10.1016/0370-1573(89)90156-7
Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc.199, 883 (1982)
Ghosh, P., Abramowicz, M.A.: Electromagnetic extraction of rotational energy from disc-fed black holes: the strength of the Blandford-Znajek process. Mon. Not. R. Astron. Soc.292, 887 (1997)
Livio, M., Ogilvie, G.I., Pringle, J.E.: Extracting energy from black holes: the relative importance of the Blandford-Znajek mechanism. Astrophys. J.512, 100 (1999). doi:10.1086/306777
Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys.70, 1 (1998). doi:10.1103/RevModPhys.70.1
Tchekhovskoy, A., McKinney, J.C., Narayan, R.: General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser.372, 012040 (2012). doi:10.1088/1742-6596/372/1/012040
Gammie, C.F., McKinney, J.C., Tóth, G.: HARM: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J.589, 444 (2003). doi:10.1086/374594
Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn55, L69 (2003)
Igumenshchev, I.V.: Magnetically arrested disks and the origin of Poynting jets: a numerical study. Astrophys. J.677, 317 (2008). doi:10.1086/529025
McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc.423, 3083 (2012). doi:10.1111/j.1365-2966.2012.21074.x
Penna, R.F., McKinney, J.C., Narayan, R., et al.: Simulations of magnetized discs around black holes: effects of black hole spin, disc thickness and magnetic field geometry. Mon. Not. R. Astron. Soc.408, 752 (2010). doi:10.1111/j.1365-2966.2010.17170.x
Tchekhovskoy, A., McKinney, J.C.: Prograde and retrograde black holes: whose jet is more powerful? Mon. Not. R. Astron. Soc.423, L55 (2012). doi:10.1111/j.1745-3933.2012.01256.x
Fabian, A.C., Rees, M.J., Stella, L., White, N.E.: X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc.238, 729 (1989)
Tanaka, Y., Nandra, K., Fabian, A.C., et al.: Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Nature375, 659 (1995). doi:10.1038/375659a0
Reynolds, C.S., Brenneman, L.W., Lohfink, A.M., et al.: Probing relativistic astrophysics around SMBHs: The Suzaku AGN spin survey. In: Petre, R., Mitsuda, K., Angelini, L. (eds.) SUZAKU 2011: Exploring the X-ray Universe: Suzaku and Beyond, AIP Conference Proceedings, vol. 1427, pp. 157–164. American Institute of Physics, Melville, NY (2012). doi:10.1063/1.3696170
Zhang, S.N., Cui, W., Chen, W.: Black hole spin in X-ray binaries: observational consequences. Astrophys. J. Lett.482, L155 (1997). doi:10.1086/310705
Novikov, I.D., Thorne, K.S.: Astrophysics of Black Holes. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes. Les Astres Occlus, pp. 343–450. Gordon and Breach, New York; London (1973)
McClintock, J.E., Narayan, R.: Black Hole Spin Via Continuum Fitting and the Role of Spin in Powering Transient Jets. Space Sci Rev. (2013). doi:10.1007/s11214-013-0003-9
Shafee, R., McClintock, J.E., Narayan, R., et al.: Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. Astrophys. J. Lett.636, L113 (2006). doi:10.1086/498938
McClintock, J.E., Shafee, R., Narayan, R., et al.: The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J.652, 518 (2006). doi:10.1086/508457
McClintock, J.E., Narayan, R., Davis, S.W., et al.: Measuring the spins of accreting black holes. Class. Quantum Grav.28, 114009 (2011). doi:10.1088/0264-9381/28/11/114009
Steiner, J.F., McClintock, J.E., Narayan, R.: Jet power and black hole spin: testing an empirical relationship and using it to predict the spins of six black holes. Astrophys. J.762, 104 (2013). doi:10.1088/0004-637X/762/2/104
Mirabel, I.F., Rodríguez, L.F.: Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys.37, 409 (1999). doi:10.1146/annurev.astro.37.1.409
Beckwith, K., Hawley, J.F., Krolik, J.H.: The influence of magnetic field geometry on the evolution of black hole accretion flows: similar disks, drastically different jets. Astrophys. J.678, 1180 (2008). doi:10.1086/533492
McKinney, J.C., Blandford, R.D.: Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc.394, L126 (2009). doi:10.1111/j.1745-3933.2009.00625.x
Narayan, R., McClintock, J.E.: Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc.419, L69 (2012). doi:10.1111/j.1745-3933.2011.01181.x
Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J.711, 50 (2010). doi:10.1088/0004-637X/711/1/50
Author information
Authors and Affiliations
Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St, Cambridge, MA, 02138, USA
Ramesh Narayan & Jeffrey E. McClintock
Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ, 08544, USA
Alexander Tchekhovskoy
- Ramesh Narayan
Search author on:PubMed Google Scholar
- Jeffrey E. McClintock
Search author on:PubMed Google Scholar
- Alexander Tchekhovskoy
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toRamesh Narayan.
Editor information
Editors and Affiliations
Faculty of Mathematics and Physics, Charles University, Praha 8, Czech Republic
Jiří Bičák
Faculty of Mathematics and Physics, Charles University, Praha 8, Czech Republic
Tomáš Ledvinka
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Narayan, R., McClintock, J.E., Tchekhovskoy, A. (2014). Energy Extraction from Spinning Black Holes Via Relativistic Jets. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_25
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-319-06348-5
Online ISBN:978-3-319-06349-2
eBook Packages:Physics and AstronomyPhysics and Astronomy (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



