Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Energy Extraction from Spinning Black Holes Via Relativistic Jets

  • Chapter
  • First Online:

Part of the book series:Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

Notes

  1. 1.

    Penrose considered a simple model in which particles on negative energy orbits fall into a spinning BH. Wagh and Dadhich [12] extended the analysis to discrete particle accretion in the presence of a magnetic field, which introduces additional interesting effects. We do not discuss these particle-based mechanisms, but focus purely on fluid dynamical processes within the magnetohydrodynamic (MHD) approximation. We also do not discuss an ongoing controversy on whether or not different mechanisms based on magnetized fluids differ from one another [6].

  2. 2.

    In the case of a fifth transient BH, 4U1543-47, radio observations did not include the peak of the light curve, so one could only deduce a lower limit to the jet power, which is shown as an open circle in Fig. 4a.

  3. 3.

    The two scalings agree for small values of\(a_*\), but differ as\(a_*\rightarrow 1\).

References

  1. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento1, 252 (1969)

    Google Scholar 

  2. Ruffini, R., Wilson, J.R.: Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D12, 2959 (1975). doi:10.1103/PhysRevD.12.2959

    Article ADS  Google Scholar 

  3. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc.179, 433 (1977)

    ADS  Google Scholar 

  4. Damour, T., Ruffini, R., Hanni, R.S., Wilson, J.R.: Regions of magnetic support of a plasma around a black hole. Phys. Rev. D17, 1518 (1978). doi:10.1103/PhysRevD.17.1518

    Article ADS  Google Scholar 

  5. Koide, S., Shibata, K., Kudoh, T., Meier, D.L.: Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets. Science295, 1688 (2002). doi:10.1126/science.1068240

    Article ADS  Google Scholar 

  6. Komissarov, S.S.: Blandford-Znajek mechanism versus Penrose process. J. Korean Phys. Soc.54, 2503 (2009). doi:10.3938/jkps.54.2503

    Article ADS  Google Scholar 

  7. McKinney, J.C., Gammie, C.F.: A measurement of the electromagnetic luminosity of a Kerr black hole. Astrophys. J.611, 977 (2004). doi:10.1086/422244

    Article ADS  Google Scholar 

  8. McKinney, J.C.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc.368, 1561 (2006). doi:10.1111/j.1365-2966.2006.10256.x

    Article ADS  Google Scholar 

  9. Beskin, V.S.: MHD Flows in Compact Astrophysical Objects. Astronomy and astrophysics library. Springer, (2010). doi:10.1007/978-3-642-01290-7

  10. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418, L79 (2011). doi:10.1111/j.1745-3933.2011.01147.x

    Article ADS  Google Scholar 

  11. Meier, D.L.: Black Hole Astrophysics: The Engine Paradigm. Praxis Books in Astronomy and Planetary Sciences. Springer, Heidelberg; New York (2012)

    Book  Google Scholar 

  12. Wagh, S.M., Dadhich, N.: The energetics of black holes in electromagnetic fields by the Penrose process. Phys. Rep.183, 137 (1989). doi:10.1016/0370-1573(89)90156-7

  13. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc.199, 883 (1982)

    ADS MATH  Google Scholar 

  14. Ghosh, P., Abramowicz, M.A.: Electromagnetic extraction of rotational energy from disc-fed black holes: the strength of the Blandford-Znajek process. Mon. Not. R. Astron. Soc.292, 887 (1997)

    Article ADS  Google Scholar 

  15. Livio, M., Ogilvie, G.I., Pringle, J.E.: Extracting energy from black holes: the relative importance of the Blandford-Znajek mechanism. Astrophys. J.512, 100 (1999). doi:10.1086/306777

    Article ADS  Google Scholar 

  16. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys.70, 1 (1998). doi:10.1103/RevModPhys.70.1

    Article ADS  Google Scholar 

  17. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser.372, 012040 (2012). doi:10.1088/1742-6596/372/1/012040

    Article ADS  Google Scholar 

  18. Gammie, C.F., McKinney, J.C., Tóth, G.: HARM: a numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J.589, 444 (2003). doi:10.1086/374594

    Article ADS  Google Scholar 

  19. Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn55, L69 (2003)

    Article ADS  Google Scholar 

  20. Igumenshchev, I.V.: Magnetically arrested disks and the origin of Poynting jets: a numerical study. Astrophys. J.677, 317 (2008). doi:10.1086/529025

    Article ADS  Google Scholar 

  21. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc.423, 3083 (2012). doi:10.1111/j.1365-2966.2012.21074.x

    Article ADS  Google Scholar 

  22. Penna, R.F., McKinney, J.C., Narayan, R., et al.: Simulations of magnetized discs around black holes: effects of black hole spin, disc thickness and magnetic field geometry. Mon. Not. R. Astron. Soc.408, 752 (2010). doi:10.1111/j.1365-2966.2010.17170.x

    Article ADS  Google Scholar 

  23. Tchekhovskoy, A., McKinney, J.C.: Prograde and retrograde black holes: whose jet is more powerful? Mon. Not. R. Astron. Soc.423, L55 (2012). doi:10.1111/j.1745-3933.2012.01256.x

  24. Fabian, A.C., Rees, M.J., Stella, L., White, N.E.: X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc.238, 729 (1989)

    ADS  Google Scholar 

  25. Tanaka, Y., Nandra, K., Fabian, A.C., et al.: Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Nature375, 659 (1995). doi:10.1038/375659a0

    Article ADS  Google Scholar 

  26. Reynolds, C.S., Brenneman, L.W., Lohfink, A.M., et al.: Probing relativistic astrophysics around SMBHs: The Suzaku AGN spin survey. In: Petre, R., Mitsuda, K., Angelini, L. (eds.) SUZAKU 2011: Exploring the X-ray Universe: Suzaku and Beyond, AIP Conference Proceedings, vol. 1427, pp. 157–164. American Institute of Physics, Melville, NY (2012). doi:10.1063/1.3696170

  27. Zhang, S.N., Cui, W., Chen, W.: Black hole spin in X-ray binaries: observational consequences. Astrophys. J. Lett.482, L155 (1997). doi:10.1086/310705

    Article ADS  Google Scholar 

  28. Novikov, I.D., Thorne, K.S.: Astrophysics of Black Holes. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes. Les Astres Occlus, pp. 343–450. Gordon and Breach, New York; London (1973)

    Google Scholar 

  29. McClintock, J.E., Narayan, R.: Black Hole Spin Via Continuum Fitting and the Role of Spin in Powering Transient Jets. Space Sci Rev. (2013). doi:10.1007/s11214-013-0003-9

  30. Shafee, R., McClintock, J.E., Narayan, R., et al.: Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. Astrophys. J. Lett.636, L113 (2006). doi:10.1086/498938

    Article ADS  Google Scholar 

  31. McClintock, J.E., Shafee, R., Narayan, R., et al.: The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J.652, 518 (2006). doi:10.1086/508457

    Article ADS  Google Scholar 

  32. McClintock, J.E., Narayan, R., Davis, S.W., et al.: Measuring the spins of accreting black holes. Class. Quantum Grav.28, 114009 (2011). doi:10.1088/0264-9381/28/11/114009

    Article ADS MathSciNet  Google Scholar 

  33. Steiner, J.F., McClintock, J.E., Narayan, R.: Jet power and black hole spin: testing an empirical relationship and using it to predict the spins of six black holes. Astrophys. J.762, 104 (2013). doi:10.1088/0004-637X/762/2/104

    Article ADS  Google Scholar 

  34. Mirabel, I.F., Rodríguez, L.F.: Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys.37, 409 (1999). doi:10.1146/annurev.astro.37.1.409

    Article ADS  Google Scholar 

  35. Beckwith, K., Hawley, J.F., Krolik, J.H.: The influence of magnetic field geometry on the evolution of black hole accretion flows: similar disks, drastically different jets. Astrophys. J.678, 1180 (2008). doi:10.1086/533492

    Article ADS  Google Scholar 

  36. McKinney, J.C., Blandford, R.D.: Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc.394, L126 (2009). doi:10.1111/j.1745-3933.2009.00625.x

    Article ADS  Google Scholar 

  37. Narayan, R., McClintock, J.E.: Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc.419, L69 (2012). doi:10.1111/j.1745-3933.2011.01181.x

    Article ADS  Google Scholar 

  38. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J.711, 50 (2010). doi:10.1088/0004-637X/711/1/50

    Article ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St, Cambridge, MA, 02138, USA

    Ramesh Narayan & Jeffrey E. McClintock

  2. Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ, 08544, USA

    Alexander Tchekhovskoy

Authors
  1. Ramesh Narayan
  2. Jeffrey E. McClintock
  3. Alexander Tchekhovskoy

Corresponding author

Correspondence toRamesh Narayan.

Editor information

Editors and Affiliations

  1. Faculty of Mathematics and Physics, Charles University, Praha 8, Czech Republic

    Jiří Bičák

  2. Faculty of Mathematics and Physics, Charles University, Praha 8, Czech Republic

    Tomáš Ledvinka

Rights and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narayan, R., McClintock, J.E., Tchekhovskoy, A. (2014). Energy Extraction from Spinning Black Holes Via Relativistic Jets. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_25

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2026 Movatter.jp