Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models

  • Chapter

Part of the book series:Evolutionary Biology ((EBIO,volume 33))

Abstract

This review is intended to be a global examination of the various hypotheses for the origin and maintenance of genetic recombination and out-crossing, with a look at the surprisingly limited amounts of experimental evidence that has been obtained in order to distinguish among them. It is designed for the reader who wishes an overview of the current state of this large and complex field. However, it is simply not possible to deal in detail with the many competing and complementary hypotheses without turning the review into a book. We apologize in advance to those whose ideas and contributions may have been left out, or may not have been dealt with in the detail that they would like.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achtman, M., Azuma, T., Berg, D. E.,Ito, Y., Morelli, G. Pan, Z.-J., Suerbaun, S., Thompson, S.A., van der Ende, A., and van Doorn, L.-J., 1999, Recombination and clonal groupingsRichards, withinHelicobacter pylori from different geographical regions,Mol. Microbiol.32: 459–470.

    CAS  Google Scholar 

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor Miklos, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P, Brottier, E, Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, E, de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, E, Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferrier, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gon, G. F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., Ibegwam, C., Jalali, M., Kalush, R, Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, E, Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T. C., McLeod, M. E, McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D. M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskern, D. R., Pacleb, J. M, Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, R, Shen, H., Shue, B. C., Siden-Kiamos, I., Simpson, M., Skupski, M. E, Smith, T., Spier, E., Spradling, A. C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. M., Woodage, T., Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F, Zaveri, J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M., and Venter, J. C., 2000, The genome sequence ofDrosophila melanogaster,Science287: 2185–2195.

    Google Scholar 

  • Andersson, D. I., and Hughes, D., 1996, Mullér’s ratchet decreases fitness of a DNA-based microbe,Proc. Natl. Acad. Sci. USA,93: 906–907.

    Article PubMed CAS  Google Scholar 

  • Akrigg, A., and Ayad, S. R., 1970, Studies on the competence-inducing factor ofBacillus subtilis,Biochem. J.,117: 397–403.

    PubMed CAS  Google Scholar 

  • Akrigg, A., Ayad, S. R., and Barker, G. R., 1967, The nature of a competence-inducing factor

    Google Scholar 

  • Achtman, M., Azuma, T., Berg, D. E., Ito, Y., Morelli, G., Pan, Z.-J., Suerbaum, S., Thompson, S. A., van der Ende, A., and van Doom, L.-J., 1999, Recombination an inBacillus subtilis,Biochemical And Biophysical Research Communications,28: 1062–1067.

    Google Scholar 

  • Albritton, W. L., Setlow, J. K., Thomas, M., Sottnek, F, and Steigerwalt, A. G., 1984, Heterospecific transformation in the genusHaemophilus,Molecular And General Genetics,193: 358–363.

    Article PubMed CAS  Google Scholar 

  • Andersson, D. I., and Hughes, D., 1996, Muller’s ratchet decreases fitness of a DNA-based microbe.Proc. Natl. Acad. Sci. USA,93: 906–907.

    Article PubMed CAS  Google Scholar 

  • Anker, P., Stroun, M., Gahan, P., Rossier, A., and Greppin, H., 1971, Natural release of bacterial nucleic acids into plant cells and crown gall induction, in: ( L. Ledoux, ed.),International Symposium On Uptake Of Informative Molecules By Living Cells, (pp. 193–200 ). American Elsevier Publishing, Inc., New York.

    Google Scholar 

  • Bartolomei, M. S., and Tilghman, S. M., 1997, Genomic imprinting in mammals,Ann. Rev. Genet.,31: 493–525.

    Article PubMed CAS  Google Scholar 

  • Barton, S. C., Surani, M. A. H., and Norris, M. L., 1984, Role of paternal and maternal genomes in mouse development,Nature,311: 374–376.

    Article PubMed CAS  Google Scholar 

  • Bataillon, T., 2000, Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations?Heredity,84: 497–501.

    Article PubMed  Google Scholar 

  • Bateman, A. J., 1959, The viability of near-normal irradiated chromosomes,Internat. J. Rad. Biol.1: 170–180.

    Article  Google Scholar 

  • Beach, D. H., and Klar, A. J., 1984, Rearrangements of the transposable mating-type cassettes of fission yeast,EMBO J.,3: 603–610.

    PubMed CAS  Google Scholar 

  • Behnke, D., 1981, Plasmid transformation ofStreptococcus sanguis (Challis) occurs by circular and linear molecules,Mol. Gen. Genet.,181: 490–497.

    Article  Google Scholar 

  • Bell, G., 1982,The Masterpiece of Nature: the evolution and genetics of sexuality, University of California Press, Los Angeles.

    Google Scholar 

  • Bell, G., 1985, Two theories of sex and variation,Experientia,41. 1235–1245.

    Article PubMed CAS  Google Scholar 

  • Bell, G., 1988a,Sex and Death in Protozoa: The History of an Obsession, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bell, G., 19886, Uniformity and diversity in the evolution of sex, inThe Evolution of Sex, (R. E. Michod and B. R. Levin, eds.), pp.126–138, Sinauer Associates, Inc., Sunderland, Mass.

    Google Scholar 

  • Bell, G., 1993, The sexual nature of the eukaryote genome,J. Hered.,84: 351–359.

    PubMed CAS  Google Scholar 

  • Bengtsson, B. 0., 1985, Biased gene conversion as the primary function of recombination,Genetical Research,47: 771–780.

    Google Scholar 

  • Bengtsson, B. 0., 1990, The effect of biased conversion on the mutation load,Genet. Res.,55: 183–187.

    CAS  Google Scholar 

  • Bengtsson, B. 0., 1992, Deleterious mutations and the origin of the meiotic ploidy cycle,Genetics,131: 741–744.

    CAS  Google Scholar 

  • Bernstein, C., 1979, Why are babies young?Perspect. Biol. Med.,22: 539–544.

    PubMed CAS  Google Scholar 

  • Bernstein, C., 1987, Damage in DNA of an infecting phage T4 shifts reproduction from asexual to sexual allowing rescue of its genes,Genet. Res.,49: 183–189.

    Article PubMed CAS  Google Scholar 

  • Bernstein, C., and Bernstein, H., 1991,Aging,Sex,and DNA repair, Academic Press, San Diego.

    Google Scholar 

  • Bernstein, C., and Chen, D., 1987, Recombinational repair of hydrogen-peroxide induced damages in DNA of phage T4,Mut. Res.,184: 87–98.

    Article  Google Scholar 

  • Bernstein, C., and Johns, V., 1989, Sexual reproduction as a response to H202 damage inSchizosaccharomyces pombe, J. B act.,171: 1893–1897.

    CAS  Google Scholar 

  • Bernstein, H., Byerly, H., Hopf, R, and Michod, R., 1985a, DNA repair and complementation: The major factors in the origin and maintenance of sex, in:The Origin and Evolution of Sex ( H. O. Halvorson and A. Monroy, eds.) Vol.7 pp. 29–45, Marine Biological Laboratory, Woods Hole, Massachusetts: Alan R. Liss Inc., New York.

    Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1984, Origin of sex.J. Theor. Bio.,110: 323–351.

    Article CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F A., and Michod, R. E., 1985b, The evolutionary role of recombinational repair and sex,Int. Rev. Cyt.,96: 1–28.

    Article CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, F. A., and Michod, R. E., 1985c, Gentic damage, mutation, and the evolution of sex,Science,229: 1277–1281.

    Article PubMed CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1985d, Sex and the emergence of species,J. Theor. Bio.,117: 665–690.

    Article CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1987, The molecular basis of the evolution of sex,Adv. Genet.,24: 323–370.

    Article PubMed CAS  Google Scholar 

  • Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1988, Is meiotic recombination an adaptation for repairing DNA, producing genetic variation, or both? in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 139–160, Sinauer Associates, Sunderland.

    Google Scholar 

  • Bernstein, H., Byers, G. S., and Michod, R. E., 1981, Evolution of sexual reproduction: importance of DNA repair, complementation, and variation,Am. Nat.,117 :537–549.

    Google Scholar 

  • Bertani, G., and Baresi, L., 1987, Genetic transformation in the methanogenMethanococcusvoltae PS,J. Bact.,169: 2730–2738.

    PubMed CAS  Google Scholar 

  • Bierzychudek, P., 1987, Resolving the paradox of sexual reproduction: A review of experimental tests, in:The Evolution of Sex and its Consequences ( S. C. Stearns, eds.), pp. 163–174, Sinauer Associates, Sunderland.

    Google Scholar 

  • Birdsell, J., and Wills, C., 1996, Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae,Proc. Natl. Acad. Sci. USA,93: 908–912.

    Article PubMed CAS  Google Scholar 

  • Birky, C. W. Jr., 1978, Transmission genetics of mitochondria and chloroplaste,Ann. Rev. Genet.12: 471–512.

    Article PubMed  Google Scholar 

  • Birky, C. W., and Walsh, J. B., 1988, Effects of linkage on rates of molecular evolution,Proc. Natl. Acad. Sci.,USA,85: 6414–6418.

    Article PubMed CAS  Google Scholar 

  • Bodmer, W. F, 1972, The evolution of recombination mechanisms in bacteria, in:Uptake Of Informative Molecules By Living Cells ( L. Ledoux, ed.), pp. 130–139, North-Holland Publishing Company, American Elsevier Publishing Company, Amsterdam, London, New York.

    Google Scholar 

  • Bowring, F. J., and Catchesise, D. E. A., 1996, Gene conversion alone accounts for more than 90% of recombination events at theam locus ofNeurospora crassa,Genetics,143: 129–136.

    Google Scholar 

  • Bresler, S. E., 1975, Theory of misrepair mutagenesis,Mut. Res.,29: 467–472.

    Article  Google Scholar 

  • Burt, A., and Bell, G., 1987, Mammalian chiasma frequencies as a test of two theories of recombination,Nature,326: 803–805.

    Article PubMed CAS  Google Scholar 

  • Butcher, D., 1995, Muller’s ratchet, epistasis and mutation effects,Genetics,141: 431–437.

    PubMed CAS  Google Scholar 

  • Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983,Pseudomonas stutzeri and related species undergo natural transformation, ZBact.,153: 93–99.

    CAS  Google Scholar 

  • Catlin, W., 1956, Extracellular deoxyribonucleic acid of bacteria and a deoxyribonuclease inhibitor,Science124: 441–442.

    Article PubMed CAS  Google Scholar 

  • Catlin, B. W., 1960, Transformation ofNeisseria meningitidis by deoxyribonucleates from cells and from culture slime, J.Bact.,79: 579–590.

    PubMed CAS  Google Scholar 

  • Cattanach, B. M., and Kirk, M., 1985a, Differential activity of maternally and paternally derived chromosome regions in mice,Nature,315: 496–498.

    Article PubMed CAS  Google Scholar 

  • Cedar, H., 1988, DNA methylation and gene activity.Cell,53: 3–4.

    Article PubMed CAS  Google Scholar 

  • Chao, L., 1990, Fitness of RNA viruses decreased by Muller’s ratchet,Nature,348: 454–455.

    Article PubMed CAS  Google Scholar 

  • Chao, L., Tran, T., and Matthews, C., 1992, Muller’s ratchet and the advantage of sex in the RNA virus 06,Evolution,46: 289–299.

    Article  Google Scholar 

  • Charlesworth, B., 1978, Model for evolution of Y chromosomes and dosage compensation,Proc. Natl. Acad. Sci. USA,75: 5618–5622.

    Article PubMed CAS  Google Scholar 

  • Charlesworth, D., and Charlesworth, B., 1995, Quantitative genetics in plants: the effect of the breeding system on genetic variability,Evolution49: 911–920.

    Article  Google Scholar 

  • Charlesworth, D., Morgan, M. T., and Charlesworth, B., 1993, Mutation accumulation in finite outbreeding and inbreeding populations,Genet. Res.,61: 39–56.

    Article  Google Scholar 

  • Chauvat, F, Astier, C., Vedel, F., and Joset-Espardellier, F, 1983, Transformation in the cyanobacteriumSynechococcus R2: improvement of efficiency; role of the pUH24 plasmid,Mol. Gen. Genet.,191:39–45.

    Google Scholar 

  • Chovnick, A., Ballantyne, G. H., Baillie, D. L., and Holm, D. G., 1970, Gene conversion in higher organisms: Half-tetrad analysis of recombination within the rosy cistron ofDrosophila melanogaster,Genetics,66: 315–329.

    PubMed CAS  Google Scholar 

  • Clark, A. G., and Wang, L., 1997, Epistasis in measured genotypes:Drosophila P-element insertions,Genetics,147: 157–163.

    PubMed CAS  Google Scholar 

  • Clarke, D. K., Duarte, E. A., Elena, S. E, Moya, A., Domingo, E., and Holland, J., 1994, The red queen reigns in the kingdom of RNA viruses,Proc. Natl. Acad. Sci. USA,91: 4821–4824.

    Article PubMed CAS  Google Scholar 

  • Cleveland, L. R., 1947, The origin and evolution of meiosis,Science,105: 287–288.

    Article PubMed CAS  Google Scholar 

  • Courtois, J., Courtois, B., and Guillaume, J., 1988, High-frequency transformation ofRhizobiummeliloti,J. Bact.,170: 5925–5927.

    PubMed CAS  Google Scholar 

  • Cox, E. C., and Gibson, T. C., 1974, Selection for high mutation rates in chemostats, Genetics,77: 169–184.

    PubMed CAS  Google Scholar 

  • Crouse, H., 1960, The controling element in sex chromosome behavior inSciara,Genetics,45: 1429–1443.

    PubMed CAS  Google Scholar 

  • Crow, J., and Kimura, M., 1965, Evolution in sexual and asexual populations, Am. Nat., XCIX: 439–450.

    Google Scholar 

  • Crow, J., and Kimura, M., 1969, Evolution in sexual and asexual populations: a reply, Am. Nat.103: 89–91.

    Google Scholar 

  • Crow, J. E, and Kimura, M., 1970,An Introduction To Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Cummings, D. J., MacNeil, I. A., Domenico, J., and Matsuura, E. T., 1985, Excision-amplification of mitochondrial DNA during senescence inPodospora anserina. DNA sequence analysis of three unique “plasmids”, J. Mol. Bio.185: 659–680.

    Google Scholar 

  • Cupples, D. A., Van Etten, J. L., Burbank, D. E., Lane, L. C., and Vidaver, A. K., 1980, In vitro translation of three bacteriophage 46 RNAs,J. Virology,35: 249–251.

    Google Scholar 

  • Daly, M. J., and Minton, K. W., 1995, Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans, J. Bact.,177: 5495–5505.

    PubMed CAS  Google Scholar 

  • Davies, E. K., Peters, A. D., and Keightley, P. D., 1999, High frequency of cryptic deleterious mutations in Caenorhabditis elegans.,Science285: 1748–1751.

    Article PubMed CAS  Google Scholar 

  • Davies, P. J., Evans, W. E., and Parry, J. M., 1975, Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae, Mut. Res.,29: 301–314.

    Google Scholar 

  • Dee, J., 1982, Genetics ofPhysarum polycephalum, in:Cell Biology Of Physarum andDidymium ( J. W. Daniel, ed.), pp. 211–251, Academic Press, New York.

    Chapter  Google Scholar 

  • Deng, H.-W., and Lynch, M., 1996, Estimation of deleterious-mutation parameters in natural populations,Genetics144: 349–360.

    PubMed CAS  Google Scholar 

  • Deng, H.-W., and Lynch, M., 1997, Inbreeding depression and inferred deleterious mutation parameters inDaphnia,Genetics147: 147–155.

    PubMed CAS  Google Scholar 

  • Dennis, E. S., and Brettell, R. I. S., 1990, DNA methylation of maize transposable elements is correlated with activity, Phil. Trans. R. Soc. Lond., B,326: 217–229.

    Google Scholar 

  • Denver, D. R., Morris, K., Lynch, M., Vassilieva, L., and Thomas, W. K., 2000, High direct estimate of the mutation rate in the mitochondrial genome ofCaenorhabditis elegans,Science289: 2342–2344.

    Article PubMed CAS  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1996, The effect of sex and dele- terious mutations on fitness inChlamydomonas Proc. R. Soc. Land.,B,263: 193–200.

    Article  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997a, An experimental test for synergistic epistasis and its application inChlamydomonas,Genetics,145: 815–819.

    PubMed  Google Scholar 

  • De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997b, Test of interaction between genetic markers that affect fitness in Aspergillus niger, Evolution,51: 1499–1505.

    Article  Google Scholar 

  • Doerfler, W., Hoeveler, A., Weisshaar, B., Dobrzanski, E, Knebel, D., Langner, K., Achten, S., and Muller, U., 1989, Promoter Inactivation or inhibition by sequence-specific methyla-tion and mechanisms of reactivation,Cell Biophysics,15: 21–27.

    PubMed CAS  Google Scholar 

  • Dougherty, E. C., 1955, Comparative evolution and the origin of sexuality, Syst. Zool.,4: 145–190.

    Google Scholar 

  • Drake, J. W., 1974, The role of mutation in bacterial evolution, Symp. Soc. Gen. Microbiol.,24: 41–58.

    Google Scholar 

  • Drake, J. W.. 1999, The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes,Ann. N. Y. Acad. Sci.,18: 100–107.

    Article  Google Scholar 

  • Drake, J. W., and Holland, J. J., 2000, Mutation rates among RNA viruses,Proc. Natl. Acad. Sci. USA,96:13, 910–13, 913.

    Google Scholar 

  • Duarte, E., Clarke, D., Domingo, E., and Holland, J.,1992, Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet,Proc. Nad. Acad. Sci. USA,89: 6015–6019.

    Google Scholar 

  • Dubnau, D., 1991, Genetic competence inBacillus subtilis,Microbiol. Rev.,55: 395–424.

    PubMed CAS  Google Scholar 

  • Dubnau, D., 1999, DNA uptake in bacteria.Ann. Rev. Microbiol.,53: 217–244.

    Article CAS  Google Scholar 

  • Durand, J., Birdsell, J. A., and Wills, C., 1993, Pleiotropic effects of heterozygosity at the mating-type locus of the yeastSaccharomyces cerevisiae on repair, recombination, and transformation,Mut. Res.,290: 239–247.

    Article CAS  Google Scholar 

  • Dybdahl, M. F., and Lively, C. M., 1995, Diverse, endemic and polyphyletic clones in mixed populations of the freshwater snailPotamopyrgus antipodarum,J. Evol. Bio.,8: 385–398.

    Article  Google Scholar 

  • Dybdahl, M. F., and Lively, C. M., 1998, Host-parasite coevolution: Evidence for rare advantage and time-lagged selection in a natural population,Evolution,52: 1057–1066.

    Article  Google Scholar 

  • Eigen, M., Gardiner, W., Schuster, P., and Winkler-Oswatitsch, R., 1981, The origin of genetic information,Sci. Am.,244: 88–119.

    Article PubMed CAS  Google Scholar 

  • Elena, S. E, and Lenski, R. E., 1997, Test of synergistic interactions among deleterious mutations in bacteria,Nature,390: 395–398.

    Article PubMed CAS  Google Scholar 

  • Eshel, I., and Feldman, M. W., 1970, On the evolutionary effects of recombination,Theor. Pop. Bio.,1: 88–100.

    Article CAS  Google Scholar 

  • Esposito, M. S., and Wagstaff, J. E., 1981, Mechanisms of mitotic recombination, in:The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 341–370, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Eyre-Walker, A., and Keightley, P. D., 1999, High genomic deleterious mutation rates in hominids,Nature397: 344–347.

    Article PubMed CAS  Google Scholar 

  • Fabre, R, and Roman, H., 1977, Genetic evidence for inducibility of recombination competence in yeast,Proc. Natl. Acad. Sci. USA,74: 1667–1671.

    Article PubMed CAS  Google Scholar 

  • Felkner, I. C., and Wyss, 0., 1964, A substance produced by competentBacillus cereus569 cells that affects transformability,Biochem. & Biophys. Res. Comm.,16: 94–99.

    Article CAS  Google Scholar 

  • Felsenstein, J., 1974, The evolutionary advantage of recombination,Genetics,78:737–756. Felsenstein, J., 1988, Sex and the evolution of recombination, in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 74–86, Sinauer and Associates, Sunderland.

    Google Scholar 

  • Fisher, R. A., 1930,The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R. A., 1935, The sheltering of lethals,Am. Nat.,69: 446–455.

    Article  Google Scholar 

  • Fogel, S., and Hurst, D. D., 1963, Coincidence relations between gene conversion and mitotic recombination inSaccharomyces,Genetics,48: 321–328.

    PubMed CAS  Google Scholar 

  • Friedberg, E. C., 1988, Deoxyribonucleic acid repair in the yeastSaccharomyces cerevisiae,Microbio. Rev.,52: 70–102.

    CAS  Google Scholar 

  • Friis, J., and Roman, H., 1968, The effect of the mating-type alleles on intragenic recombination in yeast,Genetics,59: 33–36.

    PubMed CAS  Google Scholar 

  • Frischer, M. E., Thurmond, J. M., and Paul, J. H., 1990, Natural plasmid transformation in a high-frequency-of-transformation marineVibrio strain,App. Environ. Microbiol.,56: 3439–3444.

    CAS  Google Scholar 

  • Fry, J. D., Keightley, P. D., Heinsohn, S. L., and Nuzhdin, S. V., 1999, New estimates of the rates and effects of mildly deleterious mutation inDrosophila melanogaster,Proc. Natl. Acad. Sci. USA,96: 574–579.

    Article PubMed CAS  Google Scholar 

  • Futuyma, D. J., 1986,Evolutionary Biology, Sinauer Associates, Sunderland.

    Google Scholar 

  • Gabriel, W., Lynch, M., and Burger, R., 1993, Muller’s ratchet and mutational meltdowns,Evolution,47: 1744–1757.

    Article  Google Scholar 

  • Garcia-Dorado, A., 1997, The rate and effects distribution of viability mutation in Drosophila: minimum distance estimation. Evolution,51: 1130–1139.

    Article  Google Scholar 

  • Ghiselin, M. T., 1974,The Economy of Nature and the Evolution of Sex, University of California Press, Berkeley.

    Google Scholar 

  • Giannelli, E, Anagnostopoulos, T., and Green, P. M., 1999, Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from Hemophilia B,Am. J. Hum. Genet.,65: 1580–1587.

    Article PubMed CAS  Google Scholar 

  • Giannelli, E, and Green, P. M., 2000, The X chromosome and the rate of deleterious mutations in humans,Am. J. Hum. Genet., 67: 515–517.

    Article PubMed CAS  Google Scholar 

  • Gibson, T. C., Scheppe, M. L., and Cox, E. C., 1970, Fitness of an Escherichia coli mutator gene, Science,169: 686–688.

    Article PubMed CAS  Google Scholar 

  • Gillin, E D., and Nossal, N. G., 1976, Control of mutation frequency by bacteriophage T4 DNA polymerase: I. The CB120 antimutator DNA polymerase is defective in strand displacement,J. Biol. Chem.,251: 5219–5224.

    PubMed CAS  Google Scholar 

  • Goldberg, I. D., Gwinn, D. D., and Thorne, C. B., 1966, Interspecies transformation betweenBacillus subtilis andBacillus licheniformis,Biochem. & Biophys. Res. Comm.,23: 543–548.

    Article CAS  Google Scholar 

  • Goodgal, S. H., 1982, DNA uptake inHaemophilus transformation,Ann. Rev. Genet.,16: 169–192.

    Article PubMed CAS  Google Scholar 

  • Goodman, S. D., and Scocca, J. J., 1988, Identification and arrangement of the DNA sequence recognized in specific transformation ofNeisseria gonorrhoeae,Proc. Natl. Acad. Sci. USA,85: 6982–6986.

    Article PubMed CAS  Google Scholar 

  • Griffiths, A. J. E, Gelbart, W. M., Miller, J. H., and Lewontin, R. C., 1999, Modern Genetic Analysis, W. H. Freeman & Co., New York.

    Google Scholar 

  • Grigorieva, G., and Shestakov, S., 1982, Transformation in the cyanobacterium Synechosystis sp. 6803, FEMS Microbiol. Lett.,13: 367–370.

    Google Scholar 

  • Gromkova, R., and Goodgal, S., 1979, Transformation by plasmid and chromosomal DNAsHaemophilus parainfluenzae,Biochem. and Biophys. Res. Comm.,88: 1428 1434.

    Google Scholar 

  • Guenther, C., 1906, Darwinism and the Problems of Life. A Study of Familiar Animal Life (McCabe, J., Trans.), A. Owen publishing, London.

    Chapter  Google Scholar 

  • Haas, R., Meyer, T. F., and van Putten, J. M. P., 1993, Aflagellated mutants ofHelicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis,Mol. Microbiol.,8: 753–760.

    Article PubMed CAS  Google Scholar 

  • Hadchouel, M., Farza, H., Simon, D., Tiollais, E, and Pourcel, C., 1987, Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates withde novo methylation,Nature,329: 454–456.

    Article PubMed CAS  Google Scholar 

  • Haigh, J.,1978, The accumulation of deleterious genes in a population-Muller’s ratchet, Theor. Pop. Bio.,14: 251–267.

    Google Scholar 

  • Hamilton, W. D., Axelrod, R., and Tanese, R., 1990, Sexual reproduction as an adaptation to resist parasites (a review),Proc. Natl. Acad. Sci. USA,87: 3566–3573.

    Article PubMed CAS  Google Scholar 

  • Hanley, K. A., Fisher, R. N., and Case, T. J., 1995, Lower mite infestations in an asexual gecko compared with its sexual ancestors,Evolution,49: 418–426.

    Article  Google Scholar 

  • Hansen, M. T., 1978, Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bact.,134: 71–75.

    PubMed CAS  Google Scholar 

  • Hare, J. T., and Taylor, J. H., 1989, Methylation in eucaryotes influences the repair of G/T and A/C DNA basepair mismatches,Cell Biophys.,15: 29–40.

    PubMed CAS  Google Scholar 

  • Harris, E. H., 1989 The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory UseAcademic Press, San Diego.

    Google Scholar 

  • Harsojo, S., Kitayama, S., and Matsuyama, A., 1981, Genome multiplicity and radiation resistance inMicrococcus radiodurans,J. Biochem. (Tokoyo)90: 877–880.

    CAS  Google Scholar 

  • Heller, R., and Maynard Smith, J., 1979, Does Muller’s ratchet work with selfing?Genet. Res.,32: 289–293.

    Article  Google Scholar 

  • Henaut, A., and Luzzati, M., 1972, Controle de l’aptitude a recombiner pendant la phase vegetative chez Saccharomyces cerevisiae, Mol. Gen. Genet.,116: 26–34.

    Google Scholar 

  • Herskowitz, I., 1988, Life cycle of the budding yeast Saccharomyces cerevisiae, Microbiol. Rev.,52: 536–553.

    Google Scholar 

  • Hickey, D., and Rose, M., 1988, The role of gene transfer in the evolution of eukaryotic sex, in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 161–175, Sinauer Associates, Sunderland.

    Google Scholar 

  • Hickey. D. A., 1982, Selfish DNA: A sexually-transmitted nuclear parasite, Genetics,101: 519–531.

    Google Scholar 

  • Hickey, D. A., 1993, Molecular symbionts and the evolution of sex,J. Hered.,84:410–414. Hill, W. G., and Robertson, A., 1966, The effect of linkage on limits to artificial selection,Genet. Res. 8: 269–294.

    Google Scholar 

  • Hoelzer, M. A., and Michod, R. E., 1991, DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA, Genetics,128: 215–223.

    Google Scholar 

  • Hofer, F., 1985, Transfer of lactose-fermenting ability in Lactobacillus lattis, N. Z. J. Dairy Sci. Tech.,20: 179–183.

    Google Scholar 

  • Holbeck, S. L., and Strathern, J. N., 1997, A role for REV3 in mutagenesis during double-strand break repart inSaccharomyces cerevisiae,Genetics,147: 1017–1024.

    PubMed CAS  Google Scholar 

  • Holbeck, S. L., and Strathern, J. N., 1999, EXOI of Saccharomyces cerevisiae functions in muta-genesis during double-strand break repair, Ann. N. Y. Acad. Sci.,18: 375–377.

    Google Scholar 

  • Holland, J., de la Torre, J. C., Clarke, D. K., and Duarte, E., 1991, Quantitation of relative fitness and great adaptibility of clonal populations of RNA viruses. J.Virology,65: 2960–2967.

    PubMed CAS  Google Scholar 

  • Holliday, R., 1964, A mechanism for gene conversion in fungi,Genet. Res.,5:282–304. Holliday, R., 1984, The biological significance of meiosis, in:Controlling Events in Meiosis ( G. D. Evans, ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Holliday, R., 1987. X-chromosome reactivation,Nature,327: 661–662.

    Article PubMed CAS  Google Scholar 

  • Holliday, R., 1988, A possible role for meiotic recombination in germline reprogramming and maintenance, in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 45–55, Sinauer Associates, Sunderland.

    Google Scholar 

  • Holliday, R., 1989a, A different kind of inheritance,Sci. Am.,260: 60–73.

    Article PubMed CAS  Google Scholar 

  • Holliday, R., 1989b, DNA methylation and epigenetic mechanisms,Cell Biophys., 15:15–20. Hopf, F. A., Michod, R. E., and Sanderson, M. J., 1988, The effect of the reproductive system on mutation load,Theor. Pop. Bio.,33: 243–265.

    Google Scholar 

  • Hopwood, D. A., and Wright, H. M., 1972, Transformation in Thermoactinomyces vulgaris, J. Gen. Microbiol.,71: 383–398.

    Google Scholar 

  • Hoy, C. A., Fuscoe, J. C., and Thompson, L. H., 1987, Recombination and ligation of transfected DNA in CHO mutant EM9, which had high levels of sister chromatid exchange,Mol. & Cell. Bio.,7: 2007–2011.

    CAS  Google Scholar 

  • Ito, M., Fukuoda, Y., and Murata, K., 1983, Transformation of intact yeast cells treated with alkali cations,J. Bact.,153: 163–168.

    PubMed CAS  Google Scholar 

  • Jahner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Lohler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryo-genesis,Nature,298: 623–628.

    Article PubMed CAS  Google Scholar 

  • Juni, E., 1974, Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis, App. Microbiol.,27: 16–24.

    Google Scholar 

  • Juni, E., 1977, Genetic transformation assays for identification of strains of Moraxella urethralis, J. Clin. Microbial.,5: 227–235.

    Google Scholar 

  • Juni, E., and Heym, G. A., 1980, Transformation assay for identification of psychrotrophicAchromobacters,App. Environ. Microbiol.,40: 1106–1114.

    CAS  Google Scholar 

  • Juni, E., Heym, G. A., and Newcomb, R. D., 1988, Identification ofMoraxella bovis by qualitative genetic transformation and nutritional assays,App. Environ. Microbiol.,54: 1304–1306.

    CAS  Google Scholar 

  • Juni, E., and Janik, A., 1969, Transformation ofAcinetobacter calcoaceticus (Bacterium anitra-turn), J.Bact.,98: 281–288.

    PubMed CAS  Google Scholar 

  • Kawano, S., Takano, H., Mori, K., and Kuroiwa, T., 1991, A mitochondrial plasmid that promotes mitochondrial fusion inPhysarum polycephalum. Protoplasma,160: 167–169.

    Article  Google Scholar 

  • Keightley, P. D., 1994, The distribution of mutation effects on viability inDrosophilamelanogaster,Genetics138: 1315–1322.

    PubMed CAS  Google Scholar 

  • Keightley, P. D., 1998, Inference of genome-wide mutation rates and distribution of mutation effects for fitness traits: A simulation study,Genetics,150: 1283–1293.

    PubMed CAS  Google Scholar 

  • Keightley, P. D., and Bataillon, T. M., 2000, Multigeneration maximum-likelihood analysis applied to mutation-accumulation experiments inCaenorhabditis elegans,Genetics,154: 1193–1201.

    PubMed CAS  Google Scholar 

  • Keightley, P. D., and Caballero, A., 1997, Genomic mutation rates for lifetime reproductive output and lifespan inCaenorhabditis elegans,Proc. Natl. Acad. Sci. USA,94: 3823–3827.

    Article PubMed CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 1999, Terumi Mukai and the riddle of deleterious mutation rates,Genetics153: 515–523.

    PubMed CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 2000, Deleterious mutation and the evolution of sex,Science290: 331–333.

    Article PubMed CAS  Google Scholar 

  • Keightley, P. D., and Eyre-Walker, A., 2001, Resonse to Kondrashov,Trends in Genetics,17: 77–78.

    Article PubMed CAS  Google Scholar 

  • Kersulyte, D., Chalkauskas, H., and Berg, D. E., 1999, Emergence of recombinant strains ofHelicobacter pylori during human infection,Mol. Microbiol.31: 31–43.

    Article PubMed CAS  Google Scholar 

  • Kibota, T. T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness inE. coli. Nature381: 694–696.

    Article CAS  Google Scholar 

  • Klar, A. J. S., and Bonaduce, M. J., 1993, The mechanism of fission yeast mating-type inter-conversioni: evidence for two types of epigenetically inherited chromosomal imprinting events,Cold Spring Harbor Symp. Quant. Bio.,58: 457–465.

    Article CAS  Google Scholar 

  • Kondrashov, A. S., 1982, Selection against harmful mutations in large sexual and asexual populations,Genet. Res.,40: 325–332.

    Article PubMed CAS  Google Scholar 

  • Kondrashov, A. S., 1988, Deleterious mutations and the evolution of sexual reproduction,Nature.,336: 435–440.

    Article PubMed CAS  Google Scholar 

  • Kondrashov, A. S.,1993, Classification of hypotheses on the advantage of amphimixis,J.tiered., 84: 372–387.

    Google Scholar 

  • Kondrashov, A. S., 1994c, Muller’s ratchet under epistatic selection,Genetics,136: 1469 1473.

    Google Scholar 

  • Kondrashov, A. S., 1998, Measuring spontaneous deleterious mutation process,Genetica,102 /103: 183–197.

    Article PubMed  Google Scholar 

  • Kondrashov, A. S., 2001, Sex and U,Trends in Genetics,17: 75–77.

    Article PubMed CAS  Google Scholar 

  • Kowalski, S., and Laskowski, W., 1975, The effect of threerad genes on survival, inter-and intragenic mitotic recombination inSaccharomyces,Mol. & Gen. Genet.,136: 75–86.

    Article CAS  Google Scholar 

  • Koyama, Y, Hoshino, T., Tomizuka, N., and Furukawa, K., 1986, Genetic transformation of the extreme thermophileThermus thermophilus and of otherThermus spp,J Bact,166: 338–340.

    PubMed CAS  Google Scholar 

  • Kruger, D. H., Schroeder, C., Santibanez-Koref, M., and Reuter, M., 1989, Avoidance of DNA methylation: a virus-encoded methylase inhibitor and evidence for counterselection of methylation recognition sites in viral genomes,Cell Biophys.,15: 87–95.

    PubMed CAS  Google Scholar 

  • Kunz, B. A., Barclay, B. J., Game, J. C., Little, J. G., and Haynes, R. H., 1980, Induction of mitotic recombination in yeast by starvation for thymine nucleotides,Proc. Natl. Acad. Sci. USA,77: 6057–6061.

    Article PubMed CAS  Google Scholar 

  • Kunz, B. A., and Haynes, R. H., 1981a, DNA repair and mutagenesis in yeast, in:The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 371–414, Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Kunz, B. A., and Haynes, R. H. 1981b, Phenomenology and genetic control of mitotic recombination in yeast.Ann. Rev. Genet.,15: 57–89.

    Article PubMed CAS  Google Scholar 

  • Lambert, J. D., and Moran, N. A., 1998, Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria,Proc. Natl. Acad. Sci. USA,95: 4458–4462.

    Article PubMed CAS  Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., and Gray, M. W., 1997, An ancestral mitochondrial DNA resembling a eubacterial genome in miniature,Nature,387: 493–497.

    Article PubMed CAS  Google Scholar 

  • Lemontt, J. F., 1980, Genetic and physiological factors affecting repair and mutagenesis in yeast, in:DNA repair and mutagenesis in eukaryotes ( F. J. de Serres, ed.), pp. 85–120, Plenum Press, New York.

    Chapter  Google Scholar 

  • Li, E., Beard, C., and Jaenisch, R., 1993, Role for DNA methylation in genomic imprinting,Nature,366: 362–365.

    Article PubMed CAS  Google Scholar 

  • Linz, B., Schenker, M., Zhu, P., and Achtman, M., 2000, Frequent interspecific genetic exchange between commensal neisseriae andNeisseria meningitides,Mol. Microbiol.,36: 1049–1058.

    Article PubMed CAS  Google Scholar 

  • Lively, C., Craddock, C., and Vrijenhoek, R., 1990, Red queen hypothesis supported by parasitism in sexual and clonal fish,Nature,344: 864–866.

    Article  Google Scholar 

  • Lorenz, M. G., Gerjets, D., and Wackernagel, W., 1991, Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria,Arch. Microbial.,156: 319–326.

    Article CAS  Google Scholar 

  • Lorenz, M. G., and Wackernagel, W., 1993, Transformation as a mechanism for bacterial gene transfer in soil and sediment—studies with a sand/clay microcosm and the cyanobacteriumSynechocystis OL50, in:Trends In Microbial Ecology ( R. Guerrero and C. PedrosAlio, eds.), pp. 325–330, Spanish Society For Microbiology, Barcelona.

    Google Scholar 

  • Lorenz, M. G., and Wackernagel, W., 1994, Bacterial gene transfer by natural genetic transformation in the environment,Microbial. Rev.,58: 563–602.

    CAS  Google Scholar 

  • Lynch, M., and Blanchard, J. L., 1998, Deleterious mutation accumulation in organelle genomes,Genetica,102 /103: 29–39.

    Article PubMed  Google Scholar 

  • Lynch, M., Burger, R., Butcher, D., and Gabriel, W., 1993, The mutational meltdown in asexual populations,J. Hered.,84: 339–344.

    PubMed CAS  Google Scholar 

  • Lynch, M., and Gabriel, W., 1990, Mutation load and the survival of small populations,Evolution,44: 1725–1737.

    Article  Google Scholar 

  • Kibota, T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness inE. coli,Nature,381: 694–696.

    Article PubMed CAS  Google Scholar 

  • Magni, G. E., 1963, The origin of spontaneous mutations during meiosis,Proc. Natl. Acad. Sci. USA,50: 975–980.

    Article PubMed CAS  Google Scholar 

  • Magni, G. E., and von Borstel, R. C., 1962, Different rates of spontaneous mutation during mitosis and meiosis in yeast,Genetics47: 1097–1108.

    PubMed CAS  Google Scholar 

  • Margulis, L., 1981,Symbiosis in Cell Evolution, W. H. Freeman and Company, San Francisco. Margulis, L., and Sagan, D., 1984, Evolutionary origins of sex, in:Oxford Surveys in Evolutionary Biology (R. Dawkins and M. Ridley, eds.), pp. 16–47, Oxford University Press, London.

    Google Scholar 

  • Margulis, L., and Sagan, D., 1985,Origins of Sex, Yale University Press, New Haven. Margulis, L., Sagan, D., and Olendzenski, L., 1985, What is sex? in:The Origin and Evolution of Sex (H. O. Halvorson and A. Monroy, eds.), pp. 69–85, Marine Biological Laboratory, Woods Hole, Alan R. Liss Inc., New York.

    Google Scholar 

  • Mathis, L. S., and Scocca, J. J., 1982,Haemophilus influenzae andNeisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation,J. Gen. Microbiol.,128: 1159–1161.

    CAS  Google Scholar 

  • Mattimore, V., and Battista, J. R.,1996, Radioresistance ofDeinococcus ragiodurans: Functions necesary to survive ionizing radiation are also necessary to survive prolonged desiccation,J. Bact,178: 633–637.

    Google Scholar 

  • Matzke, M., and Matzke, A. J. M., 1993, Genomic imprinting in plants: parental effects and trans-inactivation phenomena,Ann. Rev. Plant Phys. & Plant Mol. Bio.,44: 53–76.

    Article CAS  Google Scholar 

  • Maynard Smith, J., 1968, Evolution in sexual and asexual populations,Am. Nat. 102:469–473. Maynard Smith, J., 1971, What use is sex?J. Theor. Biol.,30: 319–335.

    Article  Google Scholar 

  • Maynard Smith, J., 1978, The Evolution of Sex, Canbridge University Press, Cambridge. Maynard Smith, J., 1988, The evolution of recombination, in: The Evolution of Sex (R. E.

    Google Scholar 

  • Michod and B. R. Levin, eds.) pp. 106–125, Sinauer and Associates, Sunderland. Maynard Smith, J., and Smith, N. H., 1998, Detecting recombination from gene trees, Mol. Biol.Evo1.,15:590–599.

    Google Scholar 

  • McClain, M. E., and Spendlove, R. S., 1966, Multiplicity reactivation of reovirus particles after exposure to ultraviolet light,J. Bact.,92: 1422–1429.

    PubMed CAS  Google Scholar 

  • McGill, C. B., Holbeck, S. L., and Strathern, J. N.,1998, The chromosomal bias of misincorporation during double-strand break repair is not altered in mismatch repair-defective strains ofSaccharomyces cerevisiae, Genetics148:1525–1533.

    Google Scholar 

  • McGrath, J., and Solter, D., 1984, Completion of mouse embryogenesis requires both the maternal and paternal genomes,Cell,37: 179–183.

    Article PubMed CAS  Google Scholar 

  • Melzer, A. L., and Koeslag, J. H., 1991, Mutations do not accumulate in asexual isolates capable of growth and extinction-Muller’s ratchet re-examined, Evolution,45: 649–655.

    Article  Google Scholar 

  • Mereschkovsky, C., 1905, Le plante consideree comme une complex symbiotique, Bulletin Societe Science Naturelle, Ouest,6: 17–98.

    Google Scholar 

  • Metzenberg, R. L., and Glass, N. L., 1990, Mating type and mating strategies inNeurospora, BioEssays12: 53–59.

    Article CAS  Google Scholar 

  • Mevarech, M., and Werczberger, R., 1985, Genetic transfer inHalobacterium volcanii, J. Bact.,162: 461–462.

    CAS  Google Scholar 

  • Michod, R., 1993, Genetic error, sex, and diploidy, J. Hered.,84: 360–371.

    PubMed CAS  Google Scholar 

  • Michod, R. E., 1990, Evolution of sex, Trends Ecol. Evol.5: 30.

    Google Scholar 

  • Michod, R. E., and Gayley, T. W., 1992, Masking of mutations and the evolution of sex,Am. Nat.,139: 706–734.

    Article  Google Scholar 

  • Michod, R. E., and Levin, B. R., 1988, Introduction, in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 1–6, Sinauer Associates, Sunderland.

    Google Scholar 

  • Michod, R. E., and Long, A., 1995, Origin of sex for error repair. II. Rarity and extreme environments.Theor. Pop. Biol.47: 56–81.

    Article CAS  Google Scholar 

  • Michod, R. E., Wojciechowski, M. E, and Hoelzer, M. A., 1988, DNA repair and the evolution of transformation in the bacteriumBacillus subtilis, Genetics,118: 31–39.

    CAS  Google Scholar 

  • Miller, S. L., and Orgel, L. E., 1974,The Origins of Life on the Earh (W. D. McElroy and C. P. Swanson, eds.), Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Mongold, J. A., 1992, DNA repair and the evolution of transformation inHaemophilus influenzae, Genetics132: 893–898.

    CAS  Google Scholar 

  • Monk, M., 1986, Methylation and the X chromosome, BioEssays,4: 204–208.

    Article PubMed CAS  Google Scholar 

  • Monk, M., 1987, Memories of mother and father, Nature,328: 203–204.

    Article PubMed CAS  Google Scholar 

  • Moore, T., and Haig, D., 1991, Genomic imprinting in mammalian development: a parental tug-of-war,Trends Genet.,7: 45–49.

    PubMed CAS  Google Scholar 

  • Moran, N. A., 1996, Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria,Proc. Natl. Acad. Sci. USA,96: 2873–2878.

    Article  Google Scholar 

  • Morgan, T. H., 1913,Heredity and Sex, Columbia University Press, New York.

    Google Scholar 

  • Moritz, C., McCallum, H., Donnellan, S., and Roberts, J. D., 1991, Parasite loads in parthenogenetic and sexual lizards(Heteronotia binoei): support for the Red Queen hypothesis,Proc. R. Soc. Lond., B,244: 145–149.

    Article  Google Scholar 

  • Morrison, D. A., Mannarelli, B., and Vijayakumar, M. N., 1982, Competence for transformation inStreptococcus pneumoniae: an inducible high-capacity system for genetic exchange, in:Microbiology (D. Schlessinger, ed.),Am. Soc. Microbiol., Washington, D. C.

    Google Scholar 

  • Mukai, T., 1964, The genetic structure of natural populations ofDrosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability,Genetics,50: 1–19.

    PubMed CAS  Google Scholar 

  • Mukai, T., and Yamazaki, T., 1964, Position effect of spontaneous mutant polygenes controlling viability inDrosophila melanogaster, Proc. Japan Acad.,40: 840–845.

    Google Scholar 

  • Mukai, T., 1969, The genetic structure of natural populations ofDrosophila melanogaster. VII Synergistic interaction of spontaneous mutant polygenes controlling viability,Genetics,61: 749–761.

    PubMed CAS  Google Scholar 

  • Mukai, T., Chigusa, S. T., Mettler, L. E., and Crow, J. E, 1972, Mutation rate and dominance of genes affecting viability inDrosophila melanogaster, Genetics,72: 335–355.

    CAS  Google Scholar 

  • Muller, H. J.,1914, A gene for the fourth chromosome ofDrosophila, J. Exp. Zoo.,17:325–336.

    Google Scholar 

  • Muller, H. J.,1918, Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors,Genetics,3: 422–500.

    Google Scholar 

  • Muller, H. J., 1932, Some genetic aspects of sex,Am. Nat.,66: 118–138.

    Article  Google Scholar 

  • Muller, H. J., 1958, Evolution by mutation,Bull. Am. Math. Soc.,64: 137–160.

    Article  Google Scholar 

  • Muller, H. J., 1964, The relation of recombination to mutational advance,Mut. Res.,1: 2–9.

    Article  Google Scholar 

  • Nachman, M. W., and Crowell, S. L., 2000, Estimate of the mutation rate per nucleotide in humans,Genetics,156: 297–304.

    PubMed CAS  Google Scholar 

  • Nei, M., 1970, Accumulation of nonfunctional genes on sheltered chromosomes,Am. Nat.,104: 311–322.

    Article  Google Scholar 

  • Nevoigt, E., Fassbender, A., and Stahl, U., 2000, Cells of the yeastSaccharomyces cerevisiae are transformable by DNA under non-artificial conditions,Yeast16: 1107–1110.

    Article PubMed CAS  Google Scholar 

  • Niwa, O., and Sugahara, T., 1981, 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA methylation,Proc. Natl. Acad. Sci. USA,78: 6290–6294.

    Google Scholar 

  • Norgard, M. V., and Imaeda, T., 1978, Physiological factors involved in the transformation ofMycobacterium smegmatis, J. Bact.,133: 1254–1262.

    CAS  Google Scholar 

  • Nur, I., Pascale, E., and Furano, A. V., 1989, Demethylation and specific remethylation of the promoter-like reion of the L family of mammalian transposable elements,Cell Biophys.,15: 61–66.

    PubMed CAS  Google Scholar 

  • O’Conner, M., Wopat, A., and Hanson, R. S., 1977, Genetic transformation inMethylobacterium organophilum, J. Gen. Microbiol.,98: 265–272.

    Google Scholar 

  • Ohnishi, 0., 1977, Spontaneous and ethyl methanesulfonate-induced mutations controlling viability inDrosophila melanogaster. II. Homozygous effect of polygenetic mutations,Genetics,87: 529–545.

    Google Scholar 

  • Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R., 1992, The mitochondrial genomes of two nematodes,Caenorhanditis eloegans andAscaris suum, Genetics,130: 471–498.

    CAS  Google Scholar 

  • Ormerod, J. G., 1988, Natural genetic transformation inChlorobium, in:Green Photosynthetic Bacteria ( J. M. Olson, J. Ormerod, J. Amesz, E. Stackebrand T, and H. G. Truper, eds.), pp. 315–319, Plenum Press, New York.

    Chapter  Google Scholar 

  • Otto, S. P, and Feldman, M. W., 1997, Deleterious mutations, variable epistatic interactions, and the evolution of recombination,Theor. Pop. Bio.,51: 134–147.

    Article CAS  Google Scholar 

  • Ottolenghi, E., and Hotchkiss, R. D., 1960, Appearance of genetic transforming activity in pneumococcal cultures.Science,132: 1257–1258.

    PubMed CAS  Google Scholar 

  • Page, W. J., 1981, Optimal conditions for induction of competence in nitrogen-fixingAzotobacter vinelanii, Can. J. Microbiol.,28: 389–397.

    Google Scholar 

  • Pakula, R., and Walczak, W., 1963, On the nature of competence of transformable Streptococci,J. Gen. Microbiol.,31. 125–133.

    PubMed CAS  Google Scholar 

  • Pickett-Heaps, J. D., 1971, The autonomy of the centriole: fact or fallacy?Cytobios,3: 205–214.

    Google Scholar 

  • Pifer, M. L., and Smith, H. O., 1985, Processing of donor DNA duringHaemophilus influenzae transformation: analysis using a model plasmid system,Proc. Natl. Acad. Sci. USA,82: 3731–3735.

    Article PubMed CAS  Google Scholar 

  • Redfield, R. J., 1988, Evolution of bacterial transformation: Is sex with dead cells ever better than no sex at all?Genetics,119: 213–221.

    PubMed CAS  Google Scholar 

  • Redfield, R. J., 1993a, Evolution of transformation: testing the DNA repair hypothesis inBacillus subtilis andHaemophilus influenzae, Genetics,133: 755–761.

    CAS  Google Scholar 

  • Redfield, R. J., 1993b, Genes for breakfast: the have-your-cake-and -eat-it-too of bacterial transformation,J. Hered.,84: 400–404.

    PubMed CAS  Google Scholar 

  • Redfield, R. J., Schrag, M. R., and Dean, A. M., 1997, The evolution of bacterial transformation: Sex with bad relations,Genetics,146: 27–38.

    PubMed CAS  Google Scholar 

  • Reik, W., Collick, A., Norris, M. L., Barton, S. C., and Surani, M. A., 1987, Genomic imprinting determines methylation of parental alleles in transgenic mice,Nature,328: 248–254.

    Article PubMed CAS  Google Scholar 

  • Resnick, M. A., 1976, The repair of double-strand breaks in DNA: A model involving recombination,J. Theor. Bio.,59: 97–106.

    Article CAS  Google Scholar 

  • Reynolds, R., 1987, Induction and repair of closely opposed pyrimidine dimers inSaccharomyces cerevisiae, Mut. Res.,184: 197–207.

    Article CAS  Google Scholar 

  • Riggs, A. D., 1989, DNA methylation and cell memory,Cell Biophys.,15: 1–13.

    PubMed CAS  Google Scholar 

  • Rodarte-Ramon, U. S., 1972, Radiation induced recombination inSaccharomyces: the genetic control of recombination in mitosis and meiosis,Rad. Res.,49: 148–154.

    Article CAS  Google Scholar 

  • Rodarte-Ramone, U. S., and Mortimer, R. K., 1972, Radiation induced recombination inSaccharomyces: isolation and genetic study of recombination deficient mutants,Rad.Res.,49: 133–147.

    Article  Google Scholar 

  • Roelants, P., Konvalinkova, V., Mergeay, M., and Lurquin, P. E, 1976, DNA uptake byStreptomyces species,Biochim. Biophys. Acta,442: 117–122.

    Article PubMed CAS  Google Scholar 

  • Rosche, W. A., and Foster, P. L., 2000, Determining mutation rates in bacterial populations,Methods20: 4–17.

    Article PubMed CAS  Google Scholar 

  • Rose, M. R., 1983, The contagion mechanism for the origin of sex,J. Theor. Bio.,101: 137–146.

    Article CAS  Google Scholar 

  • Rowlands, R. T., and Turner, G., 1974, Recombination between the extranuclear genes conferring oligomycin resistance and cold sensitivity inAspergillus nidulans, Mol. Gen.Genet.,133: 151–161.

    CAS  Google Scholar 

  • Rudin, I., Sjostrom, J. E., Lindberg, M., and Philipson, L., 1974, Factors affecting competence for transformation inStaphylococcus aureus, J. Bact.,118: 155–164.

    CAS  Google Scholar 

  • Russell, P. J., 1998,Genetics, Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • Sagan, C., 1973, Ultraviolet selection pressures on the earliest organisms,J. Theor. Bio.,39: 195–200.

    Article CAS  Google Scholar 

  • Sager, R., and Granick, S., 1954, Nutritional control of sexuality inChlamydomonas reinhardi, J. Gen. Physiol.37: 729–742.

    Article CAS  Google Scholar 

  • Schultz, S. T., Lynch, M., and Willis, J. H., 1999, Spontaneous deleterious mutation inArabidopsis thaliana, Proc. Natl. Acad. Sci. USA,96: 393–11398.

    Google Scholar 

  • Seger, J., and Hamilton, W. D., 1988, Parasites and sex, in:The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 176–193, Sinauer and Associates, Sunderland.

    Google Scholar 

  • Selk, E., and Wills, C., 1997, Mismatch repair and the accumulation of deleterious mutations influence the competitive advantage ofMAT (mating type) heterozygosity in the yeastSaccharomyces cerevisiae, Genet. Res.71: 1–10.

    Article  Google Scholar 

  • Shabalina, S. A., Yampolsky, L. Y., and Kondrashov, A. S., 1997, Rapid decline of fitness in panmictic populations ofDrosophila melanogaster maintained under relaxed natural selection,Proc. Natl. Acad. Sci. USA,94: 13034–13039.

    Article PubMed CAS  Google Scholar 

  • Shah, G. R., and Caufield, P. W., 1993, Enhanced transformation of Streptococcus mutans by modifications in culture conditions, Anal. Biochem.,214: 343–346.

    Google Scholar 

  • Shaw, R. G., Byers, D. L., and Darmo, E., 2000, Spontaneous mutational effects on reproductive traits ofArabidopsis thaliana, Genetics,155: 369–378.

    CAS  Google Scholar 

  • Shestakov, S. V., and Khyen, N. T., 1970, Evidence for’genetic transformation in blue-green algaAnacystis nidulans, Mol. Gen. Genet.,107: 372–375.

    Google Scholar 

  • Simmons, M. J.. and Crow, J. F., 1977, Mutations affecting fitness inDrosophila populations,Ann. Re. Genet.,11: 49–78.

    Google Scholar 

  • Sinha, R. E, and Iyer, V. N., 1971, Competence for genetic transformation and the release of DNA from Bacillus subtilis, Biochim. Biophys. Acta,232: 61–71.

    Google Scholar 

  • Sisco, K. L., and Smith, H. 0., 1979, Sequence-specific DNA uptake in Haemophilus transformation, Proc. Natl. Acad. Sci. USA,76: 972–976.

    Google Scholar 

  • Smith, H. O., Gwinn, M. L., and Salzberg, S. L., 1999, DNA uptake signal sequences in naturally transformable bacteria,Res. Microbio1.,150: 603–616.

    Article CAS  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., Johnson, T., and Shaver, A., 2000, The evolution of mutation rates: separating causes from consequences,BioEssays,22: 1057–1066.

    Article PubMed CAS  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E., 1997, Evolution of high mutation rates in experimental populations ofE. coli, Nature,387: 703–705.

    Article CAS  Google Scholar 

  • Snustad, D. E, Simmons, M. J., and Jenkins, J. B., 1997, Principles of Genetics, John Wiley & Sons, New York.

    Google Scholar 

  • Sparling, P. F., 1966, Genetic transformation ofNeisseria gonorrhoeae to streptomycin resistance,J Bact.,92: 1364–1371.

    PubMed CAS  Google Scholar 

  • Stearns, S. C., 1987,The Evolution of Sex and its Consequences, Sinauer Associates, Sunderland.

    Google Scholar 

  • Stevens, S. E., and Porter, R. D., 1986, Heterospecific transformation among cyanobacteria, J. Bact.,167: 1074–1–76.

    Google Scholar 

  • Stewart, G., and Carlson, C. A., 1986, The biology of natural transformation, Ann. Rev. Microbiol.,40: 211–235.

    Google Scholar 

  • Strathern, J. N., Shafer, B. K., and McGill, C. B., 1995, DNA synthesis errors associated with double-strand-break repair,Genetics,140: 965–972.

    PubMed CAS  Google Scholar 

  • Streips, U. N., and Young, E E., 1971, Mode of action of the competence-inducing factor of Bacillus stearothermophilus, J. Bact.,106: 868–875.

    PubMed CAS  Google Scholar 

  • Strobeck, C., Maynard Smith, J., and Charlesworth, B., 1976, The effects of hitchhiking on a gene for recombination,Genetics,82: 547–558.

    PubMed CAS  Google Scholar 

  • Stroun, M., Anker, E, and Auderset, G., 1970, Natural release of nucleic acids from bacteria into plant cells,Nature,227: 607–608.

    Article PubMed CAS  Google Scholar 

  • Stryer, L., 1988,Biochemistry ( 3rd ed. ), W. H. Freeman, New York.

    Google Scholar 

  • Sturtevant, A. H., and Mather, K., 1938, The interrelations of inversions, heterosis, and recombination, Am.Nat.,72: 447–452.

    Article  Google Scholar 

  • Suerbaum, S., and Achtman, M., 1999, Evolution of Helicobacter pylori: the role of recombination, Trends in Microbiology,7: 182.

    Article PubMed CAS  Google Scholar 

  • Suerbaum, S., Maynard Smith, J., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I., and Achtman, M., 1998, Free recombination withinHelicobacter pylori, Proc. Natl. Acad. Sci., USA,95: 12619–12624.

    Article CAS  Google Scholar 

  • Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W., 1989, Double-stranded breaks at an initiation site for meiotic gene conversion,Nature,338: 87–90.

    Article PubMed CAS  Google Scholar 

  • Surani, M. A., Reik, W., and Allen, N. D., 1988, Transgenes as molecular probes for genomic imprinting,Trends Genet.,4: 59–62.

    Article PubMed CAS  Google Scholar 

  • Surani, M. A. H., Barton, S. C., and Norris, M. L., 1984, Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis,Nature,308: 548-550.

    Google Scholar 

  • Surani, M. A. H., Barton, S. C., and Norris, M. L., 1987, Influence of parental chromosomes on spatial specificity in androgenetic-s parthenogenetic chimeras in the mouse,Nature,326: 395–397.

    Article PubMed CAS  Google Scholar 

  • Swain, J. L., Stewart, T. A., and Leder, P, 1987, Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental inprinting,Cell,50: 719–727.

    Article PubMed CAS  Google Scholar 

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, E. W., 1983, The double-strand break repair model for recombination,Cell,33: 25–35.

    Article PubMed CAS  Google Scholar 

  • Takahashi, I., and Gibbons, N. E., 1957, Effect of salt concentration on the extracellular nucleic acids ofMicrococcus halodenitrificans, Can. J. Microhiol.,3: 687–694.

    Article CAS  Google Scholar 

  • Thacker, J., 1989, The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia,Mut. Res.,220: 187–204.

    Article CAS  Google Scholar 

  • Thompson, L. H., Brookman, K. W., Dillehay, L. E., Carrano, A. V., Mazrimas, J. A., Mooney, C. L., and Minkler, J. L., 1982, A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand -break repair, and an extraordinary baseline frequency of sister-chromatid exchange,Mut. Res.95: 427–440.

    Article CAS  Google Scholar 

  • Tilman, D., Wedin, D., and Knops, J., 1996, Productivity and sustainability influenced by bio-diversity in grassland ecosystems,Nature,379: 7113–720.

    Article  Google Scholar 

  • Tirgari, S., and Moseley, B. E. B., 1980, Transformation inMicrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell,J. Gen. Microbial.,119: 287–296.

    Google Scholar 

  • Tomasz, A., 1965, Control of the competent state inPneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria,Nature,208: 155–159.

    Article PubMed CAS  Google Scholar 

  • Tomasz, A., 1966, Model for the mechanism controlling the expression of competent state inPneumococcus cultures,J. Bact.,91: 1050–1061.

    PubMed CAS  Google Scholar 

  • Tomasz, A., and Hotchkiss, R. D., 1964, Regulation of the transformability ofPneumococcal cultures by macromolecular cell products,Proc. Natl. Acad. Sci. LISA,51: 480–487.

    Article CAS  Google Scholar 

  • Trehan, K., and Sinha, U., 1981, Genetic transfer in a nitrogen-fixing filamentous cyanobac- terium,J. Gen. Microbiol.124: 349–352.

    Google Scholar 

  • Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M., and Bartolomei, M. S., 1995, A paternal-specific methylation imprint marks the alleles of the mouseH19 gene,Nat. Genet.,9: 407–413.

    Article PubMed CAS  Google Scholar 

  • Van Nieuwenhoven, W. H., Hellingwerf, K. J., Venema, G., and Konings, W. N., 1982, Role of proton motive force in genetic transformation ofBacillus subtilis, J. Bact.,151: 771–776.

    Google Scholar 

  • Van Valen, L., 1973, A new evolutionary law,Evol. Theory,1: 1–30.

    Google Scholar 

  • Vassilieva, L. L., and Lynch, M., 1999, The rate of spontaneous mutation for life-history traits inCaenorhabditis elegans, Genetics,151: 119–129.

    CAS  Google Scholar 

  • Venema, G., 1979, Bacterial transformation,Adv. Microb. Phys.,19: 245–331.

    Article CAS  Google Scholar 

  • Wagner, G. P, and Gabriel, W., 1990, Quantitative variation in finite parthenogenetic populations: What stops Muller’s ratchet in the absence of recombination?Evolution,44: 715–731.

    Article  Google Scholar 

  • Wake, C. T., Vernaleone, F., and Wilson, J. H., 1985, Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells,Mol. & Cell. Biol.,5: 2080–2089.

    CAS  Google Scholar 

  • Walker, I., 1978, The evolution of sexual reproduction as a repair mechanism. Part 1. A model for self-repair and its biological implications, Acta Bio.,27: 133–158.

    Google Scholar 

  • Wang, Y., and Taylor, D. E., 1990, Natural transformation in Campylohacter species, J. Bact.,172: 949–955.

    PubMed CAS  Google Scholar 

  • Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M., 1987, Molecular Biology of the Gene ( 4th ed. ), Benjamin Cummings, Menlo Park.

    Google Scholar 

  • Weismann, A., 1889,Essays upon Heredity and Kindred Biological Problems (E. B. Poulton, S. Schonland, and A. E. Shipley Trans. ). Clarendon Press, Oxford.

    Google Scholar 

  • West, S. A., Peters, A. D., and Barton, N. H., 1998, Testing for epistasis between deleterious mutations,Genetics,149: 435–444.

    PubMed CAS  Google Scholar 

  • Whitehouse, H. L. K., 1982,Genetic Recombination: Understanding The Mechanisms. Wiley, New York.

    Google Scholar 

  • Williams, G. C., 1975,Sex and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • Williams, G. C., and Mitton, J. B., 1973, Why reproduce sexually?J. Theor. Biol.,39: 545–554.

    Article PubMed CAS  Google Scholar 

  • Willis, J. H.. 1993, Effects of different levels of inbreeding on fitness components inMimulusguttatus, Evolution,47: 864–876.

    Article  Google Scholar 

  • Wilson, V. L., and Jones, P. A., 1983, DNA methylation decreases in aging but not in immortal cells,Science,220: 1055–1057.

    Article PubMed CAS  Google Scholar 

  • Wojciechowski, M. R, Hoelzer, M. A., and Michod, R. E., 1989, DNA repair and the evolution of transformation in Bacillus subtilis. II. Role of inducible repair,Genetics,121: 411–422.

    PubMed CAS  Google Scholar 

  • Worrell, V. E., Nagle, D. P, McCarthy, D., and Eisenbraun, A., 1988, Genetic transformation system in the archaebacteriumMethanobacterium thermoautotrophicum Marburg,J. Bact.,170: 653–656.

    PubMed CAS  Google Scholar 

  • Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding, and selection in evolution,Proc. XI International Congr. Genet.,1: 356–366.

    Google Scholar 

  • Wright, S., 1988, Surfaces of selective value revisited,Am. Nat.,131: 115–123.

    Article  Google Scholar 

  • Yankofsky, S. A., Gurevich, R., Grimland, N., and Stark, A. A., 1983, Genetic transformation of obligately chemolithotrophic thiobacilli,J. Bact.,153: 652–657.

    PubMed CAS  Google Scholar 

  • Zuccotti, M., and Monk, M., 1995, Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation, Nat. Genet.,9: 316–320.

    Google Scholar 

  • Zeyl, C., Bell, G., and Green, D. M., 1996, Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae,Genetics143: 1567–1577.

    PubMed CAS  Google Scholar 

  • Zeyl, C., and DeVisser, J. A. G. M., 2000, Estimates of the rate and distribution of fitness effects of spontaneous mutation inSaccharomyces cerevisiae, Manuscript Submitted to Genetics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA

    John A. Birdsell

  2. Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA, 92093-0116, USA

    Christopher Wills

Authors
  1. John A. Birdsell

    You can also search for this author inPubMed Google Scholar

  2. Christopher Wills

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Cornell University, Ithaca, New York, USA

    Ross J. Macintyre

  2. University of California, Riverside, Riverside, California, USA

    Michael T. Clegg

Rights and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birdsell, J.A., Wills, C. (2003). The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models. In: Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5190-1_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp