Part of the book series:Advances in Experimental Medicine and Biology ((AEMB,volume 481))
362Accesses
40Citations
Abstract
The skeletal muscle-specific calpain homologue, p94 (also called calpain 3), is essential for normal muscle function. A mutation of the p94 gene causes limb-girdle muscular dystrophy type 2A (LGMD2A), which is one type of autosomal recessive inherited disease characterized by progressive muscular degeneration. In myofibrils, p94 specifically binds to connectin/ titin, and the activity of p94 is probably suppressed by this binding. Thus, we postulate that a signal transduction pathway exists, involving p94 and connectin/titin to modulate functions of skeletal muscle, and LGMD2A occurs when this signalling pathway is not properly regulated by p94. LGMD2A mutants of p94 also reveal significant information on the factors that relate structure to function in this molecule.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Banik NL, Shields DC, Ray S, Davis B, Matzelle D, Wilford G, Hogan EL. Role of calpain in spinal cord injury: effects of calpain and free radical inhibitors.Ann N Y Acad Sci 1998;844:131–37.
Barnes TM, Hodgkin J. Thetra-3 sex determination gene ofCaenorhabditis elegansencodes a member of the calpain regulatory protease family.EMBO J 1996;15:4477–84.
Bartoloni L, Horrigan SK, Viles KD, Gilchrist JM, Stajich JM, Vance JM, Yamaoka LH, Pericak-Vance MA, Westbrook CA, Speer MC. Use of a CEPH meiotic breakpoint panel to refine the locus of limb-girdle muscular dystrophy type 1A (LGMD1A) to a 2-Mb interval on 5q31.Genomics. 1998;54:250–55.
Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira E de S, Zatz M, Beckmann JS, Bushby K. A gene related toCaenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B.Nat Genet 1998;20:37–42.
Beckmann JS, Bushby KM. Advances in the molecular genetics of the limb-girdle type of autosomal recessive progressive muscular dystrophy.Curr Opin Neurol 1996;9:389–93.
Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy.Nat Genet 1994;8:323–27.
Bonne G, Di Barletta MR, Varnous S, Bécane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy.Nat Genet 1999;21:285–88.
Bönnemann CG, McNally EM, Kunkel LM. Beyond dystrophin: current progress in the muscular dystrophies.Curr Opin Pediatr 1996;8:569–82.
Bönnemann CG, Modi R, Noguchi S, Mizuno Y, Yoshida M, Gussoni E, McNally EM, Duggan DJ, Angelini C, Hoffman EP Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex.Nat Genet 1995;11:266–73.
Brais B, Bouchard JP, Xie YG, Rochefort DL, Chrétien N, Tome FM, Lafrenière RG, Rommens JM, Uyama E, Nohira O, Blumen S, Korczyn AD, Heutink P, Mathieu J, Duranceau A, Codère F, Fardeau M, Rouleau GA. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy.Nat Genet 1998;18:164–67.
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvnen V, Johnson K, Harper PS, Shaw DJ, Housman DE. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.Cell 1992;68:799–808.
Carafoli E, Molinari M. Calpain: a protease in search of a function?Biochem Biophys Res Commun 1998;247:193–03.
Cox GF, Kunkel LM. Dystrophies and heart disease.Curr Opin Cardiol 1997;12;329–43.
Denison SH, Orejas M, Arst HN Jr. Signalling of ambient pH inAspergillusinvolves a cysteine protease.J Biol Chem 1995;270:28519–22.
Emery AEH. The muscular dystrophies.BMJ 1998;317:991–95.
Futai E, Maeda T, Sorimachi H, Kitamoto K, Ishiura S, Suzuki K. The protease activity of a calpain-like cysteine protease inSaccharomyces cerevisiaeis required for alkaline adaptation and sporulation.Mol Gen Genet 1999;260:559–68.
Haravuori H, Mäkelä-Bengs P, Udd B, Partanen J, Pulkkinen L, Somer H, Peltonen L. Assignment of the tibial muscular dystrophy locus to chromosome 2q31.Am J Hum Genet 1998;62:620–26.
Helbling-Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J, Tomé FM, Schwartz K, Fardeau M, Tryggvason K, Guicheney P. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy.Nat Genet 1995;11:216–18.
Herasse M, Ono Y, Fougerousse F, Kimura E, Stockholm D, Beley C, Montarras D, Pinset C, Sorimachi H, Suzuki K, Beckmann JS, Richard I. Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events.Mol Cell Biol 1999;19:4047–55.
Hoffman EP, Knudson CM, Campbell KP, Kunkel LM. Subcellular fractionation of dystrophin to the triads of skeletal muscle.Nature 1987;330:754–758.
Johnson GV, Guttmann RP Calpains: intact and active?Bioessays 1997;19:101–8.
Kinbara K, Sorimachi H, Ishiura S, Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs.Arch Biochem Biophys 1997;342:99–107.
Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy.Nature 1998;394:388–92.
Lim LE, Campbell KP. The sarcoglycan complex in limb-girdle muscular dystrophy.Curr Opin Neurol 1998;11:443–52.
Lim LE, Duclos F, Broux O, Bourg N, Sunada Y, Allamand V, Meyer J, Richard I, Moomaw C, Slaughter C, Tome FMS, Fardeau M, Jackson CE, Beckmann JS, Campbell KP. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4ql2.Nat Genet 1995;11:257–65.
Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH Jr. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb-girdle muscular dystrophy.Nat Genet 1998;20:31–36.
Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonté D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.Nat Genet 1998;18:365–68.
Moreira ES, Vainzof M, Marie SK, Sertié AL, Zatz M, Passos-Bueno MR. The seventh form of autosomal recessive limb-girdle muscular dystrophy is mapped to 17q11–12.Am J Hum Genet 1997;61:151–59.
Nagano A, Koga R, Ogawa M, Kurano Y, Kawada J, Okada R, Hayashi YK, Tsukahara T, Arahata K. Ernenn deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy.Nat Genet 1996;12:254–59.
Nigro V, de Sá Moreira E, Piluso G, Vainzof M, Belsito A, Politano L, Puca AA, Passos-Bueno MR, Zatz M. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene.Nat Genet 1996;14:195–98.
Noguchi S, McNally EM, Ben Othmane K, Hagiwara Y, Mizuno Y, Yoshida M, Yamamoto H, Bönnemann CG, Gussoni E, Denton PH, Kyriakides T, Middleton L, Hentati F, Hamida MB, Nonaka I, Vance JM, Kunkel LM, Ozawa E. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy.Science 1995;270:819–22.
Ono Y, Sorimachi H, Suzuki K. Structure and physiology of calpain, an enigmatic protease.Biochem Biophys Res Commun 1998a;245:289–94.
Ono Y, Shimada H, Sorimachi H, Richard I, Saido T C, Beckmann J S, Ishiura S, Suzuki K. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A (LGMD2A).J Biol Chem 1998b;273:17073–78.
Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy.Muscle Nerve 1998;21:421–38.
Ranum LP, Rasmussen PF, Benzow KA, Koob MD, Day JW. Genetic mapping of a second myotonic dystrophy locus.Nat Genet 1998;19:196–98.
Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C, Hillaire D, Passos-Bueno M-R, Zatz M, Tischfield JA, Fardeau M, Jackson CE, Cohen D, Beckmann JS. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A.Cell 1995;81:27–40.
Richard I, Roudaut C, Saenz A, Pogue R, Grimbergen J E M A, Beley C, Cobo A-M, de Diego C, Eymard B, Gallano P, Ginjaar H B, Lasa A, Pollitt C, Topaloglu H, de Visser M, van der Kooi A, Bushby K, Bakker E, Lopez de Munain A, Fardeau M, and Beckmann J S. Calpainopathy — A survey of mutations and polymorphisms.Am J Hum Genet 1999;64:1524–40.
Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD, Lim LE, Lee JC, Tomé FMS, Romero NB, Fardeau M, Beckmann JS, Kaplan J-C, Campbell KP. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy.Cell 1994;78:625–33.
Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m-and μ-types. Specific expression of the mRNA in skeletal muscle.J Biol Chem 1989;264:20106–11.
Sorimachi H, Toyama-Sorimachi N, Saido TC, Kawasaki H, Sugita H, Miyasaka M, Arahata K, Ishiura S, Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle.J Biol Chem 1993;268:10593–605.
Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K. Muscle-specific calpain, p94, responsible for limb-girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence.J Biol Chem 1995;270:31158–62.
Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains.Biochem J 1997;328:721–32.
Suzuki K, Sorimachi H. A novel aspect of calpain activation.FEBS Lett 1998;433:1–4.
Tsuchiya Y, Arahata K. Emery-Dreifuss syndrome.Curr Opin Neurol 1997;10:421–25.
van der Kooi AJ, van Meegen M, Ledderhof TM, McNally EM, de Visser M, Bolhuis PA. Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome lq11–21.Am J Hum Genet 1997;60:891–95.
Weiler T, Greenberg CR, Zelinski T, Nylen E, Coghlan G, Crumley MJ, Fujiwara TM, Morgan K, Wrogemann K. A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another limb-girdle muscular dystrophy locus.Am J Hum Genet 1998;63:140–47.
Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R,et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy.Nat Genet 1992;2:26–30.
Author information
Authors and Affiliations
Department of Molecular Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
Hiroyuki Sorimachi, Yasuko Ono & Koichi Suzuki
- Hiroyuki Sorimachi
Search author on:PubMed Google Scholar
- Yasuko Ono
Search author on:PubMed Google Scholar
- Koichi Suzuki
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Washington State University, Pullman, Washington, USA
Henk L. Granzier
University of Washington, Seattle, Washington, USA
Gerald H. Pollack
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media New York
About this chapter
Cite this chapter
Sorimachi, H., Ono, Y., Suzuki, K. (2000). Skeletal Muscle-Specific Calpain, p94, and Connectin/Titin: Their Physiological Functions and Relationship to Limb-Girdle Muscular Dystrophy Type 2A. In: Granzier, H.L., Pollack, G.H. (eds) Elastic Filaments of the Cell. Advances in Experimental Medicine and Biology, vol 481. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4267-4_23
Download citation
Publisher Name:Springer, Boston, MA
Print ISBN:978-1-4613-6916-5
Online ISBN:978-1-4615-4267-4
eBook Packages:Springer Book Archive
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



