Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Optimal Sequential Estimation for Markov-Additive Processes

  • Chapter

Part of the book series:Statistics for Industry and Technology ((SIT))

Abstract

The problem of estimating the parameters of a Markov-additive process from data observed up to a random stopping time is considered. Markov-additive processes are a class of Markov processes which have important applications to queueing and data communication models. They have been used to model queueing-reliability systems, arrival processes in telecommunication networks, environmental data, neural impulses etc. The problem of obtaining optimal sequential estimation procedures, i.e., optimal stopping times and the corresponding estimators, in estimating functions of the unknown parameters of Markov-additive processes is considered. The parametric functions and sequential procedures which admit minimum variance unbiased estimators are characterized. In the main, the problem of finding optimal sequential procedures is considered in the case where the loss incurred is due not only to the error of estimation, but also to the cost of observing the process. Using a weighted squared error loss and assuming the cost is a function of the additive component of a Markov-additive process (for example, the cost depending on arrivals at a queueing system up to the moment of stopping), a class of minimax sequential procedures is derived for estimating the ratios between transition intensities of the embedded Markov chain and the mean value parameter of the additive part of the Markov-additive process considered.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Barndorff-Nielsen, O. (1978).Information and Exponential Families, New York: John Wiley & Sons.

    MATH  Google Scholar 

  2. Brown, L. (1986).Fundamentals of Statistical Exponential Families, Hay-ward, CA: IMS.

    MATH  Google Scholar 

  3. Çinlar, E. (1972). Markov additive processes. I.Z. Wahrschein, verw. Gebiete,24, 85–93.

    Article MATH  Google Scholar 

  4. Ezhov, I. and Skorohod, A. (1969). Markov processes with homogeneous second component. I.Teor. Verojatn. Primen.,14, 3–14 (in Russian).

    MATH  Google Scholar 

  5. Franz, J. and Magiera, R. (1997). On information inequalities in sequential estimation for stochastic processes,Mathematical Methods of Operations Research,46, 1–27.

    Article MathSciNet MATH  Google Scholar 

  6. Fygenson, M. (1991). Optimal sequential estimation for semi-Markov and Markov renewal processes,Communications in Statistics—Theory and Methods,20, 1427–1444.

    Article MathSciNet MATH  Google Scholar 

  7. Gill, R. (1980). Nonparametric estimation based on censored observation of a Markov renewal process,Z. Wahrschein, verw. Gebiete,53, 97–116.

    Article MathSciNet MATH  Google Scholar 

  8. Karr, A. (1991).Point Processes and their Statistical Inference, Second edition, New York: Marcel Dekker.

    MATH  Google Scholar 

  9. Magiera, R. and Stefanov, V. T. (1989). Sequential estimation in exponential-type processes under random initial conditions,Sequential Analysis,8, 147–167.

    Article MathSciNet MATH  Google Scholar 

  10. Magiera, R. and Wilczyński, M. (1991). Conjugate priors for exponential-type processes,Statistics and Probability Letters,12, 379–384.

    Article MathSciNet MATH  Google Scholar 

  11. Neuts, M. (1992). Models based on the Markovian arrival process,IEICE Transactions and Communications,E75-B, 1255–1265.

    Google Scholar 

  12. Pacheco, A. and Prabhu, N. (1995). Markov-additive processes of arrivals, InAdvances in Queueing: Theory, Methods, and Open Problems (Ed., J. H. Dshalalow), pp. 167–194, Boca Raton: CRC Press.

    Google Scholar 

  13. Phelan, M. (1990a). Bayes estimation from a Markov renewal process,Annals in Statistics,18, 603–616.

    Article MathSciNet MATH  Google Scholar 

  14. Phelan, M. (1990b). Estimating the transition probabilities from censored Markov renewal processes,Statistics & Probability Letters,10, 43–47.

    Article MathSciNet MATH  Google Scholar 

  15. Prabhu, N. (1991). Markov renewal and Markov-additive processes,Technical Report 984, College of Engineering, Cornell University.

    Google Scholar 

  16. Rydén, T. (1994). Parameter estimation for Markov modulated Poisson processes,Communications in Statistics—Stochastic Models,10, 795–829.

    Article MathSciNet MATH  Google Scholar 

  17. Stefanov, V. (1986). Efficient sequential estimation in exponential-type processes,Annals in Statistics,14, 1606–1611.

    Article MathSciNet MATH  Google Scholar 

  18. Stefanov, V. (1995). Explicit limit results for minimal sufficient statistics and maximum likelihood estimators in some Markov processes: exponential families approach,Annals in Statistics,23, 1073–1101.

    Article MathSciNet MATH  Google Scholar 

  19. Try bula, S. (1982). Sequential estimation in finite-state Markov processes,Zastos. Matem.,17, 227–248.

    MathSciNet MATH  Google Scholar 

  20. Wilczyński, M. (1985). Minimax sequential estimation for the multinomial and gamma processes,Zastos. Matem.,18, 577–595.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Technical University of Wroclaw, Wroclaw, Poland

    Ryszard Magiera

Authors
  1. Ryszard Magiera

Editor information

Editors and Affiliations

  1. Dept. of Mathematical Stochastics, Otto-von-Guericke-University Magdeburg, Box 4120, D-39016, Magdeburg, Germany

    Waltraud Kahle

  2. Dept. of Applied Mathematics, University of Würzburg, Sanderring 2, D-97070, Würzburg, Germany

    Elart von Collani

  3. Department of Mathematical Stochastics, Technical University Dresden, Zellescher Weg 12-14, D-01069, Dresden, Germany

    Jürgen Franz

  4. Department of Stochastics, University of Ulm, D-89069, Ulm, Germany

    Uwe Jensen

Rights and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Magiera, R. (1998). Optimal Sequential Estimation for Markov-Additive Processes. In: Kahle, W., von Collani, E., Franz, J., Jensen, U. (eds) Advances in Stochastic Models for Reliability, Quality and Safety. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2234-7_12

Download citation

Keywords and phrases

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp