Movatterモバイル変換


[0]ホーム

URL:


SciPy

Array creation routines

Ones and zeros

empty(shape[, dtype, order])Return a new array of given shape and type, without initializing entries.
empty_like(prototype[, dtype, order, subok])Return a new array with the same shape and type as a given array.
eye(N[, M, k, dtype, order])Return a 2-D array with ones on the diagonal and zeros elsewhere.
identity(n[, dtype])Return the identity array.
ones(shape[, dtype, order])Return a new array of given shape and type, filled with ones.
ones_like(a[, dtype, order, subok])Return an array of ones with the same shape and type as a given array.
zeros(shape[, dtype, order])Return a new array of given shape and type, filled with zeros.
zeros_like(a[, dtype, order, subok])Return an array of zeros with the same shape and type as a given array.
full(shape, fill_value[, dtype, order])Return a new array of given shape and type, filled withfill_value.
full_like(a, fill_value[, dtype, order, subok])Return a full array with the same shape and type as a given array.

From existing data

array(object[, dtype, copy, order, subok, ndmin])Create an array.
asarray(a[, dtype, order])Convert the input to an array.
asanyarray(a[, dtype, order])Convert the input to an ndarray, but pass ndarray subclasses through.
ascontiguousarray(a[, dtype])Return a contiguous array in memory (C order).
asmatrix(data[, dtype])Interpret the input as a matrix.
copy(a[, order])Return an array copy of the given object.
frombuffer(buffer[, dtype, count, offset])Interpret a buffer as a 1-dimensional array.
fromfile(file[, dtype, count, sep])Construct an array from data in a text or binary file.
fromfunction(function, shape, **kwargs)Construct an array by executing a function over each coordinate.
fromiter(iterable, dtype[, count])Create a new 1-dimensional array from an iterable object.
fromstring(string[, dtype, count, sep])A new 1-D array initialized from text data in a string.
loadtxt(fname[, dtype, comments, delimiter, …])Load data from a text file.

Creating record arrays (numpy.rec)

Note

numpy.rec is the preferred alias fornumpy.core.records.

core.records.array(obj[, dtype, shape, …])Construct a record array from a wide-variety of objects.
core.records.fromarrays(arrayList[, dtype, …])create a record array from a (flat) list of arrays
core.records.fromrecords(recList[, dtype, …])create a recarray from a list of records in text form
core.records.fromstring(datastring[, dtype, …])create a (read-only) record array from binary data contained in
core.records.fromfile(fd[, dtype, shape, …])Create an array from binary file data

Creating character arrays (numpy.char)

Note

numpy.char is the preferred alias fornumpy.core.defchararray.

core.defchararray.array(obj[, itemsize, …])Create achararray.
core.defchararray.asarray(obj[, itemsize, …])Convert the input to achararray, copying the data only if necessary.

Numerical ranges

arange([start,] stop[, step,][, dtype])Return evenly spaced values within a given interval.
linspace(start, stop[, num, endpoint, …])Return evenly spaced numbers over a specified interval.
logspace(start, stop[, num, endpoint, base, …])Return numbers spaced evenly on a log scale.
geomspace(start, stop[, num, endpoint, dtype])Return numbers spaced evenly on a log scale (a geometric progression).
meshgrid(*xi, **kwargs)Return coordinate matrices from coordinate vectors.
mgridnd_grid instance which returns a dense multi-dimensional “meshgrid”.
ogridnd_grid instance which returns an open multi-dimensional “meshgrid”.

Building matrices

diag(v[, k])Extract a diagonal or construct a diagonal array.
diagflat(v[, k])Create a two-dimensional array with the flattened input as a diagonal.
tri(N[, M, k, dtype])An array with ones at and below the given diagonal and zeros elsewhere.
tril(m[, k])Lower triangle of an array.
triu(m[, k])Upper triangle of an array.
vander(x[, N, increasing])Generate a Vandermonde matrix.

The Matrix class

mat(data[, dtype])Interpret the input as a matrix.
bmat(obj[, ldict, gdict])Build a matrix object from a string, nested sequence, or array.

Table Of Contents

Previous topic

Routines

Next topic

numpy.empty

Quick search

  • © Copyright 2008-2018, The SciPy community.
  • Last updated on Jul 24, 2018.
  • Created usingSphinx 1.6.6.

[8]ページ先頭

©2009-2025 Movatter.jp