Movatterモバイル変換


[0]ホーム

URL:


SciPy

numpy.trapz

numpy.trapz(y,x=None,dx=1.0,axis=-1)[source]

Integrate along the given axis using the composite trapezoidal rule.

Integratey (x) along given axis.

Parameters:
y:array_like

Input array to integrate.

x:array_like, optional

The sample points corresponding to they values. Ifx is None,the sample points are assumed to be evenly spaceddx apart. Thedefault is None.

dx:scalar, optional

The spacing between sample points whenx is None. The default is 1.

axis:int, optional

The axis along which to integrate.

Returns:
trapz:float

Definite integral as approximated by trapezoidal rule.

See also

sum,cumsum

Notes

Image[2] illustrates trapezoidal rule – y-axis locations of pointswill be taken fromy array, by default x-axis distances betweenpoints will be 1.0, alternatively they can be provided withx arrayor withdx scalar. Return value will be equal to combined area underthe red lines.

References

[1]Wikipedia page:http://en.wikipedia.org/wiki/Trapezoidal_rule
[2](1,2) Illustration image:http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

Examples

>>>np.trapz([1,2,3])4.0>>>np.trapz([1,2,3],x=[4,6,8])8.0>>>np.trapz([1,2,3],dx=2)8.0>>>a=np.arange(6).reshape(2,3)>>>aarray([[0, 1, 2],       [3, 4, 5]])>>>np.trapz(a,axis=0)array([ 1.5,  2.5,  3.5])>>>np.trapz(a,axis=1)array([ 2.,  8.])

Previous topic

numpy.cross

Next topic

numpy.exp

Quick search

  • © Copyright 2008-2018, The SciPy community.
  • Last updated on Jul 24, 2018.
  • Created usingSphinx 1.6.6.

[8]ページ先頭

©2009-2025 Movatter.jp