Movatterモバイル変換


[0]ホーム

URL:


SciPy

numpy.random.beta

numpy.random.beta(a,b,size=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution,and is related to the Gamma distribution. It has the probabilitydistribution function

f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}(1 - x)^{\beta - 1},

where the normalisation, B, is the beta function,

B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}(1 - t)^{\beta - 1} dt.

It is often seen in Bayesian inference and order statistics.

Parameters:
a:float or array_like of floats

Alpha, non-negative.

b:float or array_like of floats

Beta, non-negative.

size:int or tuple of ints, optional

Output shape. If the given shape is, e.g.,(m,n,k), thenm*n*k samples are drawn. If size isNone (default),a single value is returned ifa andb are both scalars.Otherwise,np.broadcast(a,b).size samples are drawn.

Returns:
out:ndarray or scalar

Drawn samples from the parameterized beta distribution.

Previous topic

numpy.random.permutation

Next topic

numpy.random.binomial

Quick search

  • © Copyright 2008-2018, The SciPy community.
  • Last updated on Jul 24, 2018.
  • Created usingSphinx 1.6.6.

[8]ページ先頭

©2009-2025 Movatter.jp