numpy.poly1d(c_or_r,r=False,variable=None)[source]¶A one-dimensional polynomial class.
A convenience class, used to encapsulate “natural” operations onpolynomials so that said operations may take on their customaryform in code (see Examples).
| Parameters: |
|
|---|
Examples
Construct the polynomialx^2 + 2x + 3:
>>>p=np.poly1d([1,2,3])>>>print(np.poly1d(p)) 21 x + 2 x + 3
Evaluate the polynomial atx = 0.5:
>>>p(0.5)4.25
Find the roots:
>>>p.rarray([-1.+1.41421356j, -1.-1.41421356j])>>>p(p.r)array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j])
These numbers in the previous line represent (0, 0) to machine precision
Show the coefficients:
>>>p.carray([1, 2, 3])
Display the order (the leading zero-coefficients are removed):
>>>p.order2
Show the coefficient of the k-th power in the polynomial(which is equivalent top.c[-(i+1)]):
>>>p[1]2
Polynomials can be added, subtracted, multiplied, and divided(returns quotient and remainder):
>>>p*ppoly1d([ 1, 4, 10, 12, 9])
>>>(p**3+4)/p(poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.]))
asarray(p) gives the coefficient array, so polynomials can beused in all functions that accept arrays:
>>>p**2# square of polynomialpoly1d([ 1, 4, 10, 12, 9])
>>>np.square(p)# square of individual coefficientsarray([1, 4, 9])
The variable used in the string representation ofp can be modified,using thevariable parameter:
>>>p=np.poly1d([1,2,3],variable='z')>>>print(p) 21 z + 2 z + 3
Construct a polynomial from its roots:
>>>np.poly1d([1,2],True)poly1d([ 1, -3, 2])
This is the same polynomial as obtained by:
>>>np.poly1d([1,-1])*np.poly1d([1,-2])poly1d([ 1, -3, 2])
| Attributes: |
|
|---|
Methods
__call__(val) | |
deriv([m]) | Return a derivative of this polynomial. |
integ([m, k]) | Return an antiderivative (indefinite integral) of this polynomial. |