numpy.nanvar(a,axis=None,dtype=None,out=None,ddof=0,keepdims=<no value>)[source]¶Compute the variance along the specified axis, while ignoring NaNs.
Returns the variance of the array elements, a measure of the spread ofa distribution. The variance is computed for the flattened array bydefault, otherwise over the specified axis.
For all-NaN slices or slices with zero degrees of freedom, NaN isreturned and aRuntimeWarning is raised.
New in version 1.8.0.
| Parameters: |
|
|---|---|
| Returns: |
|
See also
numpy.doc.ufuncsNotes
The variance is the average of the squared deviations from the mean,i.e.,var=mean(abs(x-x.mean())**2).
The mean is normally calculated asx.sum()/N, whereN=len(x).If, however,ddof is specified, the divisorN-ddof is usedinstead. In standard statistical practice,ddof=1 provides anunbiased estimator of the variance of a hypothetical infinitepopulation.ddof=0 provides a maximum likelihood estimate of thevariance for normally distributed variables.
Note that for complex numbers, the absolute value is taken beforesquaring, so that the result is always real and nonnegative.
For floating-point input, the variance is computed using the sameprecision the input has. Depending on the input data, this can causethe results to be inaccurate, especially forfloat32 (see examplebelow). Specifying a higher-accuracy accumulator using thedtypekeyword can alleviate this issue.
For this function to work on sub-classes of ndarray, they must definesum with the kwargkeepdims
Examples
>>>a=np.array([[1,np.nan],[3,4]])>>>np.var(a)1.5555555555555554>>>np.nanvar(a,axis=0)array([ 1., 0.])>>>np.nanvar(a,axis=1)array([ 0., 0.25])