numpy.load(file,mmap_mode=None,allow_pickle=True,fix_imports=True,encoding='ASCII')[source]¶Load arrays or pickled objects from.npy,.npz or pickled files.
| Parameters: |
|
|---|---|
| Returns: |
|
| Raises: |
|
See also
save,savez,savez_compressed,loadtxt
memmaplib.format.open_memmap.npy file.Notes
If the file contains pickle data, then whatever object is storedin the pickle is returned.
If the file is a.npy file, then a single array is returned.
If the file is a.npz file, then a dictionary-like object isreturned, containing{filename:array} key-value pairs, one foreach file in the archive.
If the file is a.npz file, the returned value supports thecontext manager protocol in a similar fashion to the open function:
withload('foo.npz')asdata:a=data['a']
The underlying file descriptor is closed when exiting the ‘with’block.
Examples
Store data to disk, and load it again:
>>>np.save('/tmp/123',np.array([[1,2,3],[4,5,6]]))>>>np.load('/tmp/123.npy')array([[1, 2, 3], [4, 5, 6]])
Store compressed data to disk, and load it again:
>>>a=np.array([[1,2,3],[4,5,6]])>>>b=np.array([1,2])>>>np.savez('/tmp/123.npz',a=a,b=b)>>>data=np.load('/tmp/123.npz')>>>data['a']array([[1, 2, 3], [4, 5, 6]])>>>data['b']array([1, 2])>>>data.close()
Mem-map the stored array, and then access the second rowdirectly from disk:
>>>X=np.load('/tmp/123.npy',mmap_mode='r')>>>X[1,:]memmap([4, 5, 6])