numpy.std(a,axis=None,dtype=None,out=None,ddof=0,keepdims=<class numpy._globals._NoValue>)[source]¶Compute the standard deviation along the specified axis.
Returns the standard deviation, a measure of the spread of a distribution,of the array elements. The standard deviation is computed for theflattened array by default, otherwise over the specified axis.
| Parameters: | a : array_like
axis : None or int or tuple of ints, optional
dtype : dtype, optional
out : ndarray, optional
ddof : int, optional
keepdims : bool, optional
|
|---|---|
| Returns: | standard_deviation : ndarray, see dtype parameter above.
|
Notes
The standard deviation is the square root of the average of the squareddeviations from the mean, i.e.,std=sqrt(mean(abs(x-x.mean())**2)).
The average squared deviation is normally calculated asx.sum()/N, whereN=len(x). If, however,ddof is specified,the divisorN-ddof is used instead. In standard statisticalpractice,ddof=1 provides an unbiased estimator of the varianceof the infinite population.ddof=0 provides a maximum likelihoodestimate of the variance for normally distributed variables. Thestandard deviation computed in this function is the square root ofthe estimated variance, so even withddof=1, it will not be anunbiased estimate of the standard deviation per se.
Note that, for complex numbers,std takes the absolutevalue before squaring, so that the result is always real and nonnegative.
For floating-point input, thestd is computed using the sameprecision the input has. Depending on the input data, this can causethe results to be inaccurate, especially for float32 (see example below).Specifying a higher-accuracy accumulator using thedtype keyword canalleviate this issue.
Examples
>>>a=np.array([[1,2],[3,4]])>>>np.std(a)1.1180339887498949>>>np.std(a,axis=0)array([ 1., 1.])>>>np.std(a,axis=1)array([ 0.5, 0.5])
In single precision, std() can be inaccurate:
>>>a=np.zeros((2,512*512),dtype=np.float32)>>>a[0,:]=1.0>>>a[1,:]=0.1>>>np.std(a)0.45000005
Computing the standard deviation in float64 is more accurate:
>>>np.std(a,dtype=np.float64)0.44999999925494177