numpy.random.random_integers(low,high=None,size=None)¶Random integers of type np.int betweenlow andhigh, inclusive.
Return random integers of type np.int from the “discrete uniform”distribution in the closed interval [low,high]. Ifhigh isNone (the default), then results are from [1,low]. The np.inttype translates to the C long type used by Python 2 for “short”integers and its precision is platform dependent.
This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.
| Parameters: | low : int
high : int, optional
size : int or tuple of ints, optional
|
|---|---|
| Returns: | out : int or ndarray of ints
|
See also
random.randintrandom_integers, only for the half-open interval [low,high), and 0 is the lowest value ifhigh is omitted.Notes
To sample from N evenly spaced floating-point numbers between a and b,use:
a+(b-a)*(np.random.random_integers(N)-1)/(N-1.)
Examples
>>>np.random.random_integers(5)4>>>type(np.random.random_integers(5))<type 'int'>>>>np.random.random_integers(5,size=(3,2))array([[5, 4], [3, 3], [4, 5]])
Choose five random numbers from the set of five evenly-spacednumbers between 0 and 2.5, inclusive (i.e., from the set
):
>>>2.5*(np.random.random_integers(5,size=(5,))-1)/4.array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])
Roll two six sided dice 1000 times and sum the results:
>>>d1=np.random.random_integers(1,6,1000)>>>d2=np.random.random_integers(1,6,1000)>>>dsums=d1+d2
Display results as a histogram:
>>>importmatplotlib.pyplotasplt>>>count,bins,ignored=plt.hist(dsums,11,normed=True)>>>plt.show()
