numpy.linalg.inv(a)[source]¶Compute the (multiplicative) inverse of a matrix.
Given a square matrixa, return the matrixainv satisfyingdot(a,ainv)=dot(ainv,a)=eye(a.shape[0]).
| Parameters: | a : (..., M, M) array_like
|
|---|---|
| Returns: | ainv : (..., M, M) ndarray or matrix
|
| Raises: | LinAlgError
|
Notes
New in version 1.8.0.
Broadcasting rules apply, see thenumpy.linalg documentation fordetails.
Examples
>>>fromnumpy.linalgimportinv>>>a=np.array([[1.,2.],[3.,4.]])>>>ainv=inv(a)>>>np.allclose(np.dot(a,ainv),np.eye(2))True>>>np.allclose(np.dot(ainv,a),np.eye(2))True
If a is a matrix object, then the return value is a matrix as well:
>>>ainv=inv(np.matrix(a))>>>ainvmatrix([[-2. , 1. ], [ 1.5, -0.5]])
Inverses of several matrices can be computed at once:
>>>a=np.array([[[1.,2.],[3.,4.]],[[1,3],[3,5]]])>>>inv(a)array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]])