numpy.inner(a,b)¶Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complexconjugation), in higher dimensions a sum product over the last axes.
| Parameters: | a, b : array_like
|
|---|---|
| Returns: | out : ndarray
|
| Raises: | ValueError
|
See also
Notes
For vectors (1-D arrays) it computes the ordinary inner-product:
np.inner(a,b)=sum(a[:]*b[:])
More generally, ifndim(a) = r > 0 andndim(b) = s > 0:
np.inner(a,b)=np.tensordot(a,b,axes=(-1,-1))
or explicitly:
np.inner(a,b)[i0,...,ir-1,j0,...,js-1]=sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
In additiona orb may be scalars, in which case:
np.inner(a,b)=a*b
Examples
Ordinary inner product for vectors:
>>>a=np.array([1,2,3])>>>b=np.array([0,1,0])>>>np.inner(a,b)2
A multidimensional example:
>>>a=np.arange(24).reshape((2,3,4))>>>b=np.arange(4)>>>np.inner(a,b)array([[ 14, 38, 62], [ 86, 110, 134]])
An example whereb is a scalar:
>>>np.inner(np.eye(2),7)array([[ 7., 0.], [ 0., 7.]])