numpy.float_power(x1,x2,/,out=None,*,where=True,casting='same_kind',order='K',dtype=None,subok=True[,signature,extobj]) = <ufunc 'float_power'>¶First array elements raised to powers from second array, element-wise.
Raise each base inx1 to the positionally-corresponding power inx2.x1 andx2 must be broadcastable to the same shape. This differs fromthe power function in that integers, float16, and float32 are promoted tofloats with a minimum precision of float64 so that the result is alwaysinexact. The intent is that the function will return a usable result fornegative powers and seldom overflow for positive powers.
New in version 1.12.0.
| Parameters: | x1 : array_like
x2 : array_like
out : ndarray, None, or tuple of ndarray and None, optional
where : array_like, optional
**kwargs
|
|---|---|
| Returns: | y : ndarray
|
See also
powerExamples
Cube each element in a list.
>>>x1=range(6)>>>x1[0, 1, 2, 3, 4, 5]>>>np.float_power(x1,3)array([ 0., 1., 8., 27., 64., 125.])
Raise the bases to different exponents.
>>>x2=[1.0,2.0,3.0,3.0,2.0,1.0]>>>np.float_power(x1,x2)array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>>x2=np.array([[1,2,3,3,2,1],[1,2,3,3,2,1]])>>>x2array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])>>>np.float_power(x1,x2)array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]])